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Cosmic microwave background anisotropies from pre-big bang cosmology
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We present an alternative scenario for cosmic structure formation where initial fluctuations are due to
Kalb-Ramond axions produced during a pre-big bang phase of inflation. We investigate whether this scenario,
where the fluctuations are induced by seeds and therefore are of isocurvature nature, can be brought in
agreement with present observations by a suitable choice of cosmological parameters. We also discuss several
observational signatures which can distinguish axion seeds from standard inflationary models. We finally
discuss the gravitational wave background induced in this model and we show that it may be well within the
range of future observations.
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I. INTRODUCTION

It is commonly assumed that an inflationary phase is n
essary in order to construct a consistent cosmological mo
The familiar adiabatic inflationary scenario owes its popul
ity to the fact that it solves the horizon and flatness proble
and at the same time provides a consistent model for
origin of cosmological perturbations. In particular, it nat
rally leads to a flat~Harrison–Zel’dovich! spectrum of per-
turbations on large scale and to coherent acoustic oscillat
on intermediate scales which manifest themselves
‘‘peaks’’ in the cosmic microwave background~CMB!
anisotropies.

After the recent measurements of the intermediate s
CMB anisotropy power spectrum@1–4#, flat adiabatic mod-
els seem to be favored@5–8#. Nevertheless none of the man
inflationary scenarios which have been developed during
last 20 years has been constructed consistently on the b
of a serious theory of high energy physics; inflation has
ways been seen as an effective model pointing to a gre
more fundamental theory which has not been clarified so
We believe that superstrings are presently the most pro
ing candidate for such a theory but on the other hand i
well known that it is not possible to derive an inflationa
model from a string theory effective action on a gene
background, the reason being that the nonminimal coup
between the dilaton and the metric slows down the expan
of the universe spoiling the solution of the problems
which inflation has been invoked.

The pre-big bang idea@9# represents in this context one o
the first and most interesting attempts to develop a new
mological scenario which solves the horizon and flatn
problems, based on string theory. In this radically new p
ture, the underlying duality symmetry@10# present in the low
energy sector of string theory naturally selects perturba
initial conditions and automatically leads to an inflationa
phase prior to the big bang during which curvature and
dilaton are growing@9,11#. Besides its many appealing fea
tures, this scenario is known to face several problems suc
the lack of a complete and consistent description of the h
coupling and high curvature regime where the transition
0556-2821/2001/63~6!/063501~21!/$15.00 63 0635
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tween the pre-big bang and the post-big bang phase and
stabilization of the dilaton should take place@12#. Further-
more, opinions vary as to whether the initial conditions in t
pre-big bang need a large amount of fine tuning@11,13#. On
a more phenomenological side, it is nevertheless importan
study whether this scenario can provide the features tha
observe in the universe today. For recent review papers
cussing several of the previous points we refer the reade
Refs. @14,15#. For a comparison of the pre-big bang mod
with new cosmological models based on string theory
Ref. @16#.

A realistic cosmological model has to generate large-sc
matter perturbations and to reproduce the slope and the
plitude of CMB anisotropy spectrum. The pre-big bang s
nario was thought for some time to be unable to provid
scale-invariant spectrum of perturbations. First-order ten
and scalar perturbations in the metric, as well as pertur
tions of the moduli fields, were found to be characterized
extremely ‘‘blue’’ spectra@17#. This large tilt, together with
a natural normalization imposed by the string cutoff at t
shortest amplified scales, make their contribution to lar
scale structure completely negligible.

However, it was later realized that the spectral tilt of t
axion, a universal field in string theory, can assume a wh
range of values depending on the behavior of the internal
external dimensions and in particular it can naturally prov
a scale-invariant spectrum of perturbations@18–20#. This re-
sult reopened the possibility that pre-big bang cosmolo
may contain a natural mechanism for generating large-s
CMB anisotropies via the ‘‘seed’’ mechanism@21#.

This possibility was analyzed in Refs.@22,23# for mass-
less axions and in Ref.@24# for very light axions. These
analytical treatments are restricted to large angular sca
We have extended the study to smaller scales with the h
of numerical calculations. First results of this work ha
been reported in a letter@25#, where a strong correlation
between the axion spectrum,ns , and the height of the pea
was noticed. A range of values aroundns51.4 ~slightly blue
spectra! appeared to be favored by a simultaneous fit to
normalization on large angular scales observed by the
©2001 The American Physical Society01-1
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mic background explorer~COBE! @26# and the data on the
first acoustic peak available at that time.

In this companion paper we present a full explanation
the details of these calculations for the CMB angular pow
spectrum and for the dark matter power spectrum and
study the problem of the ‘‘decoherence’’ of axion perturb
tions which has been ignored in the previous work. Furth
more, we expand on the results for the observational sig
tures presented in Ref.@25# and we discuss them in the ligh
of the new CMB anisotropy data presently available by
vestigating the cosmological parameter space of the mo
We also discuss CMB polarization for our model and t
contribution of the gravitational wave background induc
by axion perturbations.

We will suppose for the rest of this work that modes w
frequencies relevant to CMB physics are unaffected by
transition from the pre- to the post-big bang phase. This m
seem a strong assumption given our ignorance on the gr
ful exit and on the duration of the intermediate string pha
Indeed, the nature and features of the transition are still
known and may lead to important changes on the charac
istics of the axions spectrum, but we are confident that
can only affect scales much smaller than those we are in
ested in: For this to hold, we just need that, at the mom
we enter the string phase, the CMB modes are well outs
the horizon and therefore not altered by any causal proc
As shown in Ref.@27# using general arguments, the lon
wavelength part of the solution to the equation of motion
the axion field is always dominated by the contribution of t
frozen modes even if the background evolution include
high-curvature phase in which the action and the pertur
tion equations are not known. This argument has been te
by numerical examples in Ref.@28# for a gravitational wave
background spectrum. Recently a graceful exit model c
sidering general high-curvature and coupling corrections
appeared in the literature@29# and numerical tests on th
axion spectrum have been performed and will be publis
soon@30# to confirm our assumption.

The paper is organized as follows: in the next section
study axion production in the pre-big bang and explain
details of the computation of the axion energy-moment
tensor which plays the role of the ‘‘seed’’ in our model.
Sec. III we determine the CMB anisotropy and dark mat
spectra. We study the problem of decoherence and show
the coherent approximation is very good for this model.
Sec. IV we compare our result with CMB and superno
data and present a cosmological parameter estimation for
scenario. We also examine and discuss the normalization
the kink in the axion spectrum which is required to fit obs
vations. Section V is devoted to a novel prediction of axi
seeds: the tensor component of their energy-momentum
sor induces a gravity wave background which might be
servable. In Sec. VI we summarize our conclusions.

II. AXION SEEDS FROM STRING COSMOLOGY

A. Extra dimensions in string cosmology

The minimal low energy effective action of the NS–N
sector of string theory in the string frame is given by@31#
06350
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S105E d10xAug10ue2f10@R101~“f10!
22 1

12 H10
2 #,

~2.1!

where we have included the 10-dimensional antisymme
tensorHmna5]@mBna] , but no gauge or fermion fields.

We assume that the 10-dimensional metric can be fac
ized into a ‘‘large’’ four-dimensional part and a ‘‘small’
six-dimensional metric,

ds25gmn dxm dxn1e2bd IJ dXI dXJ ~2.2!

~m, n50,...,3 andI, J51,...,6), whereb depends only on
time, b5b(t). If the six-dimensional piece is compactifie
to a very small radius, the lowest energy Kaluza–Kle
modes yield the four-dimensional action@18#,

S5E d4xAugue2f@R1~“f!223~“b!22 1
2 e2f~“s!2#.

~2.3!

Here we have introduced the four-dimensional axion fields
defined by

Hmna5efemnab
“bs. ~2.4!

The action~2.3! and the definition~2.4! include the four-
dimensional dilation field,f, the pseudoscalar axion field,s,
which represents the degrees of freedom of the antisymm
ric three tensor fieldH, and a modulus field,b, which pa-
rametrizes the radius, or the ‘‘breathing mode,’’ of the s
dimensional internal space. Like the dilaton, also the ax
field ~not to be confused with the Peccei-Quinn axion! is
universal in string theory.

Let us assume a homogeneous dilation backgroundf
5f(t), and an external four-dimensional spacetime a
equately described by a standard, spatially flat FLRW me
with scale factora(t),

gmn5diag@21,a2~ t !,a2~ t !,a2~ t !#. ~2.5!

In the following we shall also make use of the metric

gmn5a2~h!diag@21,1,1,1#, ~2.6!

where we have introduced the conformal timeh given by
dh5dt/a ~we shall use an overdot to indicate a derivati
with respect to conformal time,•[]/]h). With our choice
of the external metric, the four-dimensional dilaton is relat
to the 10-dimensional one by

f5f1026b. ~2.7!

When the axion field is trivial,ṡ50, or its contribution to
the global dynamics of the universe is negligible, the eq
tions derived from the action~2.3! are invariant under duality
transformations,

a~ t !→1/a~2t !, f~ t !→f~2t !26 ln~a~2t !!.
~2.8!
1-2
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES . . . PHYSICAL REVIEW D 63 063501
This invariance~scale factor duality! represents one of th
key motivations behind the pre-big bang scenario@9#. The
field equations fora, f, andb are solved@9# by the follow-
ing power laws, known as dilaton-vacuum solutions in t
pre-big bang forh,2h1 :

a~h!5S 2h

h1
D d/~12d!

, eb~h!5S 2h

h1
D z/~12d!

,

ef~h!5S 2h

h1
D ~3d21!/~12d!

, ~2.9!

whered andz satisfy the Kasner constraint,

3d216z251. ~2.10!

Here 2h1 is the ~conformal! time at which curvature and
dilaton become so large that loop corrections from str
theory have to be taken into account. It is hoped that th
corrections then lead to a radiation dominated Friedman
verse with ‘‘frozen’’ dilaton ath.h1 .

From these solutions one can see that, during the pre
bang phase, i.e., for negative conformal timeh, a negatived
and a positivez are required to make the external thre
dimensional space expand and the internal six-dimensi
space contract. Therefored has to lie in the interval21/)
<d,0, which leads always to a growing dilaton and gro
ing four-curvature,R;(ȧ/a2)2}1/(ah)2}(2h)22/(12d).

B. Amplification of axion quantum fluctuations

In this section we briefly review the mechanism for t
generation of a primordial quasi-scale-invariant spectr
from the pre-big bang phase and we discuss the depend
of the spectral index on the evolution of the internal a
external dimensions of the pre-big bang universe. Using
initial conditions the axion field obtained during the pre-b
bang phase, we then analyze its evolution after the big b
in a critical Friedmann–Lemaitre–Robertson–Walk
~FLRW! universe with and without cosmological consta
paying particular attention to the frequency modes that e
into the calculation of the CMB anisotropy power spectru

As in previous works@22–25# we suppose that the con
tribution of the axion field to the equations of motion forf,
a, andb is negligible and that the evolution of the dilato
the moduli, and the scale factor are governed by the dila
vacuum solutions~2.9!. Nevertheless, quantum fluctuation
of all the fields are of course present and we will show t
quantum fluctuations of the axion field can seed density p
turbations and CMB anisotropies in the post-big bang era
this goal we have to study the axion evolution equation a
the spectrum of axions produced during the pre-big b
phase due to their coupling to the background gravitatio
field and the dilaton.

Varying the action~2.3! with respect to the fields in the
string frame yields the equation of motion

“m~ef
“

ms!50. ~2.11!
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The study of this equation is conveniently performed by
ing the canonical variable given by

c[aAs[aef/2s, ~2.12!

which ‘‘diagonalizes’’ the perturbed action expanded up
second order. The factoraA is the so-called pump field of the
axion. The Fourier modesck(h) satisfy a canonical linea
second-order equation, completely decoupled from the o
fields,

c̈k1S k22
äA

aA
Dck50. ~2.13!

This is the evolution equation for the axion field.
Equation~2.13! is equivalent to the equation for a class

cal harmonic oscillator with parametric evolution driven b
the time dependent mass termäA /aA . When the time evo-
lution of the velocity of the pump field,ȧA , is sufficiently
slow such that, for a given modek, äA /aA!k2, we are in the
adiabatic regime with the result that no particles are crea
When the acceleration in the pump field is high enough
violate the adiabatic regime, quantum particle product
starts. The evolution of the axion field and the resulting sp
trum of particles are fully determined by the time behavior
the pump field in the different phases of the universe.
particular, a strong difference in this behavior exists betwe
the pre-big bang phase and the standard radiation and m
dominated eras in the post-big bang universe.

The pre-big bang phase is characterized by an acceler
evolution of the pump field,

aA}~2h!g, g5
5d21

2~12d!
, ~2.14!

whered,0 is the power which characterizes the evoluti
of the external dimensions, Eq.~2.9!. Using Eq.~2.13!, the
evolution equation of the axion can be written as

c̈k1k2S 12
g~g21!

x2 Dck50, ~2.15!

wherex[kh. This equation is solved analytically in term
of the Hankel functionsh1/2Hm

(1) and h1/2Hm
(2) with m5ug

21/2u.
At very early time, a perturbation of given wave numbek

is well inside the horizon,uxu5ukhu@1, and the solutions of
Eq. ~2.15! are harmonic oscillations which can be cons
tently normalized to the vacuum fluctuation spectrum forh
→2`. This initial condition implies that theHm

(1) mode is
absent and

ck~h!5~2h!1/2Hm
~2!~kh!, m5

1

2
2g5

123d

12d
,

for h,2h1 . ~2.16!

Here2h1→h1 is the transition time scale between the pr
big bang phase and the standard radiation dominated er
1-3
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F. VERNIZZI, A. MELCHIORRI, AND R. DURRER PHYSICAL REVIEW D63 063501
After the singularity, during the standard radiation a
matter dominated eras, the dilaton is frozen,f5const, and
the pump field is proportional to the standard scale fac
aA}a. The scale factor,a, and its second derivative,ä, are
given by Friedman’s equations. For a critical universe, wh
we consider throughout our calculations and which is c
tainly a good approximation until redshiftsz<5, we have

ä

a
5

4pG

3
a2~r23p!1

2a2L

3
, ~2.17!

ȧ2

a2 5
8pG

3
a2r1

a2L

3
. ~2.18!

Energy conservation for radiation~r! and matter~m! yields
r r}1/a4 and rm}1/a3, with r5r r1rm and p5r r /3; r r is
the radiation energy density,rm is the matter energy density
andp the pressure of the radiation fluid. At early times, wh
L is negligible, these equations have a simple analytical
lution,

a5aeq~h/h* 1 1
4 ~h/h* !2!,

h* [S 3

4pGreq
D 1/2

5
heq

2~&21!
.1.2heq, ~2.19!

whereheq is the transition time between the radiation and
matter dominated era,r r(heq)5rm(heq)5req/2. The mass
term during the post-big bang becomes

äA

aA
5

ä

a
5

1

2hh* 1 1
2 h2

. ~2.20!

When L is nonvanishing, the solution for the effective p
tential can be found numerically but since the contribution
a small cosmological constant to the scale factor beco
important only at late time, the solutions to~2.15! are almost
unaffected; this has been checked by numerical tests. In
radiation dominated era,h,heq, the mass term can be ap
proximated byäA /aA.1/(2h* h).

We now study the axion evolution in the post-big ba
era. Let us write the term in parentheses on the left-hand
of the axion equation of motion, Eq.~2.13!, as

S k22
ä

aD5k2S 12
~ ä/a!h2

x2 D5k2S 12
h/~2h* 1h/2!

x2 D .

~2.21!

In order to study the solution of Eq.~2.13! we have to study
the ratio of the dimensionless mass term (ä/a)h2 andx2 to
be compared with unity. As long as we are well in the rad
tion dominated era,h!h* , the dimensionless mass term
small and particle creation induced by the pump field is n
ligible at early times. Equation~2.13! then is a harmonic
equation solved by free plane waves,

ck~h!5
1

Ak
@c1~k!e2 ikh1c2~k!eikh#. ~2.22!
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By matching the two solutions~2.16! and ~2.22! at the tran-
sition timeh1 we obtain, forukh1u!1 andheq@h.h1 ,

c6~k!56c~k! with ^uc~k!u2&.H S k

k1
D 22m21

, k,k1,

0, k.k1,

~2.23!

so that

ck5
c~k!

Ak
sin~k~h2h1!! for h1,h!heq. ~2.24!

Here k151/h1 represents the maximal amplified frequen
of the pre-big bang phase. As already discussed in the in
duction we suppose that modes with frequencies much lo
thank1 are unaffected by the unknown details of the tran
tion from the pre- to the post-big bang phase.

The energy-density distribution of the produced axions
then

drs~k!

d logk
.

1

p2 S k

aD 4

^uc~k!u2&.S k1

a D 4S k

k1
D 322m

}kns21.

~2.25!

The axion spectral indexns is related to the power which
characterizes the evolution of the external dimensions by

ns5422m5312g52S 11d

12d D , ~2.26!

which follows from Eq.~2.16!. In order not to over-produce
infrared axions we have to requirem<3/2, orns>1, which
implies d>21/3. As already pointed out in Ref.@22#, the
limiting value m53/2 corresponds precisely to a Harrison
Zel’dovich spectrum of CMB anisotropies on large scale.
terms of the evolution of the scale factor, this correspond
an isotropic expansion and contraction, respectively, of
external and internal dimensions,

a}
1

eb }~2h!21/3. ~2.27!

Notice that only for a 10-dimensional spacetime, symme
cal expansion and contraction corresponds to a flat ax
spectrum which induces a Harrison–Zel’dovich spectrum
CMB fluctuations@23,22#.

Nevertheless, as will be discussed in Sec. IV, at very la
scales and very early~negative! times, we will need a
slightly blue axion spectrum to fit CMB data. This requires
somewhat larger value ofd, i.e., a slower expansion of th
external dimensions and, correspondingly, a somewhat fa
contraction of internal dimensions at early time. This bl
spectrum cannot be maintained up to the string scale bec
the fixed normalization at the string scale tog1

2

5@(k1/a1)/mPlanck#
2;0.01 – 1024 would lead to much too

small amplitudes at the COBE scale.
Let us therefore investigate what happens if the unive

expands with some expansion law described byd2 at early
1-4
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES . . . PHYSICAL REVIEW D 63 063501
times,h,hb,2h1 and then switches to an expansion la
given byd1 after hb . Sufficiently short wavelength mode
which are inside the horizon during the entire epochh
,hb , which satisfy ukhbu.1, are not influenced by this
change in the expansion law. The termäA /aA is indeed sub-
dominant in the equation of motion forck during this epoch
and hence the Bogoliubov coefficientuc(k)u2 of Eq. ~2.23! is
not influenced by the transition; we just obtain the res
~2.23! with m5m1 .

The situation is different if a mode exits the horizon b
fore hb . Then the ‘‘incoming’’ solution c(h,hb)5

(2h)1/2Hm2

(2) (kh) differs from the vacuum solution an

matching it to the general ‘‘outgoing’’ solution,c(h.hb)
5b1(2h)1/2Hm1

(1) (kh)1b2(2h)1/2Hm1

(2) (kh), yields b22b1

5(G(m2)/G(m1))ukhb/2um12m2. Correspondingly, the co
efficient uc(k)u2 is changed by a factorub22b1u2. In a model
where the expansion law changes at a well defined timehb
[21/kb , we therefore get the following Bogoliubov coeffi
cients in the post-big bang radiation era~see Fig. 1!:

^uc~k!u2&.S k

k1
D 2122m1H ~k/kb!2m122m2 for k<kb ,

1 for k>kb.
~2.28!

We do not want to specify the event which may ha
triggered such a transition fromns(k,kb)5422m251
1« to ns(k.kb)51, but there are certainly different poss
bilities. For example, it is interesting to note that isotrop
expansion and contraction,a}1/b, in a 26-dimensional
space time givesd251/5, or ns51.33, which correspond
to «51/3, just about the ‘‘tilt’’ needed to fit the observe
CMB anisotropies~see Sec. III!. Therefore, if we start ou
the pre-big bang phase with a 26-dimensional bosonic st
vacuum~which we know to be unstable due to the presen
of tachyons! which then ‘‘decays’’ to a supersymmetric an
10-dimensional string vacuum at some timehb , which cor-
responds to a comoving energy scalekb , this could induce
the required tilt.

We now study the modification in the axion spectru
during the post-big bang era, whereaA5a. As we have seen
above, during the radiation era,h,h* , the dimensionless
mass term is small. Furthermore, once a mode enters
horizon,kh.1, thek2 term always dominates over the ma

FIG. 1. Evolution of the axion spectral index during the pre-b
bang. The valueg1 is the string coupling constant given by th
string scale divided by the Planck scale,g15(k1 /a1)/mPlanck ~see
Sec. IV!.
06350
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term and there is no more particle creation. Therefore mo
which enter the horizon before equality,kh* *1, are not
amplified any further in the post-big bang phase. The sp
trum of axion perturbations for these modes remains un
fected. However, the low frequency tail of the spectrum
further modified as soon as we enter the matter domina
era, where the dimensionless mass term becomes of o
unity. The modes which enter the horizon after equal
kh* &1, are amplified. This amplification of low frequenc
modes has important consequences on the angular spec
of the CMB as we shall discuss in detail in Sec. III B.

The behavior of the dimensionless mass term (ä/a)h2

together with two modes that enter the horizon before a
after equality have been plotted in Fig. 2. As one can s
only modes entering the horizon after equality are amplifi
Deep in the matter erah@heq, the dimensionless mass ter
is constant and Eq.~2.13! becomes

c̈k1S k22
2

h2Dck50. ~2.29!

This equation can again be solved in terms of Hankel fu
tions,

ck~h!5h1/2@AH3/2
~2!~kh!1BH3/2

~1!~kh!# for h@heq,

~2.30!

whereA andB are constants to be determined by match
conditions~see Ref.@23#!. The post-big bang solutions~2.24!
and~2.30! are only correct far from matter-radiation equali
heq and in order to compute CMB anisotropies we requ
better precision for these solutions also forh;heq. We
therefore solve the axion equation of motion Eq.~2.13! nu-
merically, from the early radiation era through the radiatio
matter transition.

The axion field is then given by

FIG. 2. The dimensionless effective mass (ä/a)h2 ~thick line!
and two modes that enter the horizon before and after equality.
mode that enters the horizon before equality,w(k510keq,h), is
unaffected by the pump field and begins to oscillate without be
amplified. The mode that enters the horizon after equality,w(k
50.1keq,h), is amplified and begins to oscillate later.
1-5
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s~k,h!5
1

a~h!
ck~h!5

c~k!

aAk
w~k,h!, ~2.31!

where the variablew is the solution of equation

ẅ1S k22
ä

aDw50 ~2.32!

with initial condition @obtained from the pre-big bang solu
tion Eq. ~2.24!#

w~k,h!5sin~kh!, h!h* . ~2.33!

We have solved Eq.~2.32! numerically in this work using
the effective potential~2.20!. The prefactorc(k) is a stochas-
tic Gaussian field with power spectrum

^uc~k!u2&5~k/k1!ns25, ~2.34!

wherens is again the primordial spectral index~2.26!, our
free parameter which depends on the higher-dimensio
pre-big bang phase.

C. Axion quantum fluctuations as seeds

We are now ready to consider the axion field as a sou
of the linear cosmological perturbation equations. As in p
vious works@22–25# we suppose that the contribution of th
axions to the cosmic fluid can be neglected and that t
interact with it only gravitationally. They then play the ro
of seeds which, by their gravitational field, induce fluctu
tions in the cosmic fluid@21#. The back-reaction of the met
ric perturbations on the evolution of seeds is second o
and can be neglected in first order perturbation theory.
evolution of axions can be computed by using the soluti
of the axion field equation in the unperturbed backgrou
geometry, Eq.~2.13!.

The axion fields is a Gaussian stochastic variable.
contribution to the perturbation equations is given in terms
its energy-momentum tensor,

Tmn
~s!5]ms]ns2 1

2 gmn~]as!2, ~2.35!

which is quadratic ins and therefore not Gaussian. Mor
over, although the axion field evolves according to a lin
equation, it will enter into the perturbation equations throu
Tmn

(s) which evolves nonlinearly.
The perturbations in the dark matter and radiation com

nents are set to zero in the initial conditions and are sub
quently induced by the gravitational field of the axio
Hence, axion seed perturbations belong to the class
isocurvature perturbations. However, they differ from top
logical defects by being ‘‘acausal,’’ i.e., they have nonva
ishing correlations on super-Hubble scales, since they
due to field excitations induced during an inflationary era

As we have seen above, the axion power spectrum ob
a simple power law with cutoff and is in general not analy
at k50. Furthermore, axion perturbations do not, in gene
display the scaling behavior expected from topological
fects. In the pre-big bang we have an additional scale,
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string scalek1 , which breaks scale invariance. The axio
spectrum on large scales is therefore not determined by
mensional arguments since there are dimensionless facto
the form (k/k1)a which may alter the spectrum.1 The signifi-
cance of these points will become clearer later in the pa

As in Ref. @25#, we first consider a critical universe~total
density parameterV51) consisting of cold dark matter
baryons, photons, and three types of massless neutrino,
or without a cosmological constant. We choose the baryo
density parameterVb50.05 and the value of the Hubbl
parameterH05100h km s21 Mpc21 with h50.65.

The linear perturbation equations for this universe in Fo
rier space are of the form

DX5S, ~2.36!

whereX is a long vector containing all the fluid perturbatio
variables which depends on the wave numberk and confor-
mal time h, S is a source vector which consists of certa
combinations of the seed energy momentum tensor andD is
a linear ordinary differential operator. More details on t
linear system of differential equations~2.36! can be found in
Ref. @32# and references therein.

For a given initial condition, this equation can in gene
be solved by means of a Green’s function,G~h, h8!, in the
form

X~k,h0!5E
h in

h0G~k,h0 ,h!S~k,h!dh. ~2.37!

We want to determine power spectra or, more generally, q
dratic expectation values of the form

^Xi~k,h0!Xj~k,h0!* &, ~2.38!

which, according to Eq.~2.37!, are given by

^Xi~k,h0!Xj~k,h0!* &5E
h in

h0E
h in

h0Gi l ~h0 ,h!Gjm* ~h0 ,h8!

3^Sl~h!Sm* ~h8!&dh dh8. ~2.39!

~Sums over double indices are understood.!
We therefore have to compute the unequal time corre

tors ^Sl(h)Sm* (h8)&, of the seed energy-momentum tens
This problem can, in general, be solved by an eigenve
expansion method@32,33#, as it will be done in Sec. III B.
However, if the source evolution is linear, the problem b
comes especially simple. In this ‘‘coherent’’ case, we hav

Sj~h!5F ji ~h,h in!Si~h in!, ~2.40!

1Actually the radiation-matter transition scaleh* represents a
scale which is also present in models with topological defects,
deep in the radiation or matter era this scale has no significa
whereas as we shall see the above factors multiply the entire po
spectrum of fluctuations.
1-6



th

o

be

r

he
ce
e
e

a

o

de
e

th

e
lly

ur

mo-
ons

tion
tric

id,
by

de-

es in
the
of

q.
ed

COSMIC MICROWAVE BACKGROUND ANISOTROPIES . . . PHYSICAL REVIEW D 63 063501
with a deterministic transfer functionF ji . In this situation
we can, by a simple change of variables, diagonalize
Hermitian, positive initial equal time correlation matrix,

^Sl~h in!Sm~h in!&5l ld lm .

Inserting this in Eq.~2.39! yields

^Xi~h!Xj* ~h8!&5S E
h in

h0Gi l ~h0 ,h!Fil ~h,h in!Al l dh D
3S E

h in

h0Gjm~h0 ,h8!F jm

3~h8,h in!Alm dh8D *
d lm . ~2.41!

We therefore obtain exactly the same result as the one
tained by replacing the stochastic variableS by the determin-
istic source termSj

(det) given by

Sj
~det!~h!Si

~det!~h!5F jl ~h,h in!Fil ~h,h in!l l

5exp~ iu j i !A^uSj~h!u2&^uSi~h!u2&,

~2.42!

whereu j i is a, in principle unknown, phase which has to
determined case by case. Clearlyu j j 50. When the stochastic
variableS is real ~as in our case! exp(iuji)561. This linear
or coherent approximation will be fully used in this pape
We shall test its validity in Sec. III B.

It is useful to split the energy-momentum tensor of t
axion seeds~2.35! into a scalar, vector, and tensor part sin
the perturbations generated by each of these compon
evolves independently. Because of statistical isotropy th
three modes are uncorrelated. This also corresponds to
composition of the source termS into a scalar, vector, and
tensor contributions,S(S), S(V), andS(T). A suitable param-
etrization of the decomposition of the Fourier components
Tmn

(s) is @21#

T00
~s!5 f r ,

Tj 0
~s!52 ik j f v1v j , ~2.43!

Ti j
~s!5d i j f p2S kikj2

k2

3
d i j D f p1

1

2
~wikj1wjki !1t i j ,

wheref r , f v , f p , and f p are random function ofk; w andv
are transverse vectors,w•k5v•k50, andt i j is a symmetric,
traceless, transverse tensor,t i

i5t i j k
j50. The variables (f •),

(v,w), and (t i j ) represent the scalar, vector, and tensor
grees of freedom ofTmn

(s) , respectively. They are the sourc
of the perturbation equations.

The goal of the next three subsections is to express
correlators of the source componentsS(S), S(V), andS(T) in
terms of these variables. These expressions, inserted in
perturbation equation~2.36!, then allow us to compute th
CMB anisotropy and dark matter power spectra numerica
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D. Axion seeds—Scalar component

We first consider the scalar contribution given by the fo
variablesf • of Eq. ~2.44!. Only two of these functions are
independent, the other two are related by energy and
mentum conservation. We shall use two linear combinati
of the three scalar seed functionsf r , f v , and f p :

f r~k,h!5a2r~s!5T00
~s!~k,h!, ~2.44!

f v~k,h!5
ik jT0 j

~s!~k,h!

k2 , ~2.45!

f p~k,h!5
3

2k4 F2Ti j
~s!~k,h!kikj1

1

3
k2dklTkl

~s!~k,h!G .
~2.46!

In the presence of seeds and in the linear perturba
approximation, the scalar component of the total geome
perturbations determined by the Bardeen potentialsF andC
can be separated into a part induced by the seeds,Cs and
Fs , given by

k2Fs54pG@ f p13~ ȧ/a! f v!], Fs1Cs528pG fp ,

~2.47!

and a part induced by the perturbations of the cosmic flu
Cm andFm . The total geometric perturbations are given
the sums,

C5Cs1Cm , F5Fs1Fm . ~2.48!

The Bardeen potentials are gauge invariant and fully
scribe scalar perturbations of the Friedmann geometry~for
details look in Refs.@34,35#!.

Scalar perturbations are seeded byFs andCs . These are
the standard independent variables to use as scalar sourc
the perturbation equations. In order to simplify somewhat
computation, we useFs and f p as our scalar seed degrees
freedom and the scalar source vector becomes

S~S!~k,h!5@Fs~k,h!,4pG fp~k,h!#. ~2.49!

The energy-momentum tensor of the axion is given by E
~2.35!, which leads to the following expressions for the se
functions in terms of the axion fields:

f r~k,h!5
1

2 E d3p

~2p!3 @ṡ~p,h!ṡ~ uk2pu,h!

2p•~k2p!s~p,h!s~ uk2pu,h!#, ~2.50!

f v~k,h!52
1

k2 E d3p

~2p!3 k•~k2p!ṡ~p,h!s~ uk2pu,h!,

~2.51!
1-7
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f p~k,h!52
3

2k4 E d3p

~2p!3 F ~k•p!@k•~k2p!#

2
1

3
k2p•~k2p!Gs~p,h!s~ uk2pu,h!.

~2.52!

The first two seed functions,f r and f v , together with Eq.
~2.47!, yield Fs ,

Fs~k,h!5
4pG

k2 E d3p

~2p!3 F1

2
ṡ~p,h!ṡ~ uk2pu,h!

2
1

2
p•~k2p!s~p,h!s~ uk2pu,h!

23
ȧ

a

k•~k2p!

k2 ṡ~p,h!s~ uk2pu,h!G .
~2.53!

The only information about the source random variab
which we really need are the unequal time correlators
tween the Fourier components of the independent varia
Fs and f p . These correlators can be written in terms of fo
real @since the correlatorŝs(k,h)s* (k8,h8)& are real# sca-
lar source correlation functions,F11, F22, F12, and F21,
which completely characterize the scalar component of
source,

^Fs~k,h!Fs* ~k8,h8!&5d~k2k8!F11~k,h,h8!,

4pG^Fs~k,h! f p* ~k8,h8!&5d~k2k8!F12~k,h,h8!,

4pG^ f p~k,h!Fs* ~k8,h8!&5d~k2k8!F21~k,h,h8!,

~4pG!2^ f p~k,h! f p* ~k8,h8!&5d~k2k8!F22~k,h,h8!.
06350
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Note thatF11(k,h,h) and F22(k,h,h) are positive by defi-
nition and, since the functionsF • are real, Fi j (k,h,h8)
5F ji (k,h8,h). In order to compute these functions we ma
use of Eqs.~2.52! and ~2.53! and we exploit the stochasti
average conditions of the Gaussian variabless and ṡ
~Wick’s theorem!. We first introduce three real auxiliar
variablesS1 , S2 , andS3 , which depend on the power spe
trum of the axion field,̂ uc(k)u2&, and on the solutionw of
the evolution equation, Eq.~2.32!,

^s~k,h!s~k8,h8!&5~2p!3d~k2k8!S1~k,h,h8!,

^ṡ~k,h!ṡ~k8,h8!&5~2p!3d~k2k8!S2~k,h,h8!,
~2.54!

^s~k,h!ṡ~k8,h8!&5~2p!3d~k2k8!S3~k,h,h8!,

^ṡ~k,h!s~k8,h8!&5~2p!3d~k2k8!S3~k,h8,h!.

The variablesS i are given by

S1~k,h,h8!5
^uc~k!u2&

ka~h!a~h8!
w~k,h!w~k,h8!, ~2.55!

S2~k,h,h8!5
^uc~k!u2&

ka~h!a~h8!
@ẇ~k,h!2H~h!w~k,h!#

3@ẇ~k,h8!2H~h8!w~k,h8!#, ~2.56!

S3~k,h,h8!5
^uc~k!u2&

ka~h!a~h8!
@ẇ~k,h!2H~h!#w~k,h8!,

~2.57!

whereH[ȧ/a. Notice thatS1(h,h) andS2(h,h) are posi-
tive by definition.

Inserting these results in Eqs.~2.52! and~2.53!, and mak-
ing use of Wick’s theorem for the ‘‘random variable’’c(k),
we can work out a somewhat lengthy but straightforwa
expression for the scalar source functions,F11, F22, F12,
andF21, in terms of the variablesS1 , S2 , andS3 :
F11~k,h,h8!5
~4pG!2

k4 E d3p

~2p!3 H 1

2
S2~p,h,h8!S2~ uk2pu,h,h8!2

1

2
p•~k2p!@S3~p,h,h8!S3~ uk2pu,h,h8!

1S3~p,h8,h!S3~ uk2pu,h8,h!#23
k•~k2p!

k2 @H~h!S2~p,h,h8!S3~ uk2pu,h,h8!

1H~h8!S2~p,h,h8!S3~ uk2pu,h8,h!#1
1

2
~p•~k2p!!2S1~p,h,h8!S1~ uk2pu,h,h8!

13
~p•k2p2!~k22p•k!

k2 3@H~h!S3~p,h8,h!S1~ uk2pu,h,h8!1H~h8!S3~p,h,h8!S1~ uk2pu,h8,h!#

19
H~h!H~h8!

k4 @~k•~k2p!!2S2~p,h,h8!S1~ uk2pu,h,h8!1~k•~k2p!!~k•p!S3~p,h8,h!

3S3~ uk2pu,h,h8!#J ,

F22~k,h,h8!5
9~4pG!2

2k8 E d3p

~2p!3 F ~k•p!~k•~k2p!!2
1

3
k2p•~k2p!G2

S1~p,h,h8!S1~ uk2pu,h,h8!,
1-8
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F12~k,h,h8!52
3~4pG!2

2k6 E d3p

~2p!3 F ~k•p!~k•~k2p!!2
1

3
k2p•~k2p!G

3FS3~p,h8,h!S3~ uk2pu,h8,h!2p•~k2p!S1~p,h,h8!S1~ uk2pu,h,h8!

26H~h!
k•~k2p!

k2 S3~p,h8,h!S1~ uk2pu,h,h8!G ,
F21~k,h,h8!5F12~k,h8,h!.
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The scalar source correlators of the perturbation equa
~2.36! can be written as a two by two positive and Hermiti
matrix,

^Si
~S!~k,h!Sj

~S!* ~k,h8!&5FF11~k,h,h8! F12~k,h,h8!

F21~k,h,h8! F22~k,h,h8!
G .

~2.58!

E. Axion seeds—Vector component

The vector contribution to the perturbation equations
seeded by the vector seed functionsv i , Eq. ~2.44!,

v i~k,h!5Pi
jT0 j

~s!~k,h!, ~2.59!

wherePi
j is the projector operator onto the space orthogo

to k defined by

Pi j 5d i j 2 k̂i k̂ j , k̂i5ki /k. ~2.60!

Again, the second vector seed function,w, is given byv via
momentum conservations. Defining the projection of
vector p onto the space orthogonal tok by p'5Pp, we
obtain an expression for the vector seed functions in term
the axion field,

v j~k,h!5 i E d3p

~2p!3 pj
'ṡ~p,h!s~k2p,h!. ~2.61!

We again need the unequal time correlators between the
rier components of the vector seed functionsv i . These cor-
relators can be written in terms of a vector source correla
function G, which completely characterize the vector com
ponent of the source@32#,

~4pG!2^v i~k,h!v j~k,h8!&5~d i j 2 k̂i k̂ j !G~k,h,h8!.
~2.62!

Using Eq.~2.61! and Eq.~2.54! this function takes the form

G~k,h,h8!5
~4pG!2

2k2 E d3p

~2p!3 ~k2p22~k•p!2!

3@S2~p,h,h8!S1~ uk2pu,h,h8!

1S3~p,h,h8!S3~ uk2pu,h8,h!#.

~2.63!
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The vector source correlators of the perturbation equa
~2.36! then are

^Si
~V!~k,h!Sj

~V!~k,h8!&5Pi j G~k,h,h8!. ~2.64!

F. Axion seeds—Tensor component

The tensor contribution to the perturbation equations
seeded by the tensor seed functionst i j , Eq. ~2.43!,

t i j ~k,h!5~Pi
kPj

n2 1
2 Pi j P

kn!Tkn
~s!~k,h!. ~2.65!

This leads to an expression for the tensor seed functio
terms of the axion field,

t i j ~k,h!52E d3p

~2p!3 @pi
'pj

'2~1/2!~d i j 2 k̂i k̂ j !

3~p'!2#s~p,h!s~k2p,h!, ~2.66!

which can be used to compute the unequal time correlat
These correlators can be written in terms of a tensor sou
correlation function,H, which completely characterizes th
tensor component of the source@32#,

~4pG!2^t i j ~k,h!t lm~k,h8!&

5@d i l d jm1d imd j l 2d i j d lm1k22~d i j klkm1d lmkikj

2d i l kjkm2d imklkj2d j l kikm2d jmklki !

1k24kikjklkm#H~k,h,h8!

5~Pil Pjm1Pjl Pim2Pi j Plm!H~k,h,h8!. ~2.67!

Using Eq.~2.66! and Eq.~2.54! this function takes the form

H~k,h,h8!5
~4pG!2

4k4 E d3p

~2p!3 ~k2p2

2~k•p!2!2S1~p,h,h8!S1~ uk2pu,h,h8!.

~2.68!

The tensor source correlators of the perturbation equat
Eq. ~2.36!, hence are

^Si j
~T!~k,h!Slm

~T!~k,h8!&

5~Pil Pjm1Pjl Pim2Pi j Plm!H~k,h,h8!. ~2.69!
1-9
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III. CMB ANISOTROPIES INDUCED BY AXION SEEDS

In this section we present the CMB power spectrum
tained in our scenario. We first describe the CMB angu
power spectrum obtained in the coherent approximation
in Sec. III B we then show in detail that the coherent a
proximation is very good for axionic seeds, leading to err
of 5% or less.

A. CMB power spectrum–coherent approximation

A source is called coherent@36,37# if the unequal time
correlation functions can be factorized or replaced by
product of deterministic sources, as in Eq.~2.42!,

^Sj~h!Si~h8!&.6A^uSj~h!u2&^uSi~h8!u2&. ~3.1!

As pointed out in Sec. II C, this approximation is exact on
if the source evolution is linear. Then the differentk modes
do not mix and the value of the source term at a fixedk at a
later time is given by its value at initial time multiplied b
some transfer function, as in Eq.~2.40!. In this situation Eq.
~3.1! becomes an equality and the model is perfectly coh
ent. This is not the case for our model since we know th
although the axion field evolves according to a linear eq
tion, its energy-momentum tensor, which enters into the p
turbation equations as source, does not; it is quadratic in
field s. Thus, nonlinearity leads to mixing of scales and
deviation from a Gaussian distribution.

Nevertheless our situation is very similar to the largeN
limit of global O(N) models in which the only nonlinearitie
also are the quadratic expressions of the energy-momen
tensor. In this case the effects of decoherence are very s
and one finds that the full incoherent result is not very d
ferent from the perfectly coherent approximation@32#.

This result motivated us to compute the CMB anisotro
in the perfectly coherent approximation. Here we repeat
expand on results already presented in Ref.@25# while in the
next section we justify them by discussing the full incoher
case.

In order to compute the CMB anisotropy power spectr
in the coherent approximation, we replace the unequal t
correlation functions in Eq.~2.39! by the products

^Si
~S!~k,h!Sj

~S!~k,h8!&

5Fi j
~ns!

~k,h,h8!

.6@Fi j
~ns!

~k,h,h!Fi j
~ns!

~k,h8,h8!#1/2,

^S~V!~k,h!S~V!~k,h8!&

5G~ns!~k,h,h8!

.@G~ns!~k,h,h!G~ns!~k,h8,h8!#1/2, ~3.2!

^S~T!~k,h!S~T!~k,h8!&5H ~ns!~k,h,h8!

.@H ~ns!~k,h,h!H ~ns!~k,h8,h8!#1/2,

where we have indicated the dependence of the correla
on the spectral indexns by a superscript. In Fig. 3 we show
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the time behavior of one of the equal time correlators.
super-horizon scales,kh!1, they all display the same typi
cal behavior,}k2kh122ns, which depends on the spectr
index ns and onk, a positive power determined by dimen
sional arguments. On subhorizon scales the correlators d
fast due to incoherent oscillations of the convolved ax
field.

We have solved Eq.~2.36! for the scalar, vector, and ten
sor components. The CMB anisotropy power spectrum
given by the sum of the three contributions and depends
the spectral indexns ,

Cl
~ns!

5Cl
~Sns!

1Cl
~Vns!

1Cl
~Tns! . ~3.3!

In Fig. 4 we show the scalar, vector, and tensor contri
tions to the resulting CMB anisotropies for an axion spe
trum with tilt ns51.1. The ‘‘hump’’ at l;60 in the scalar
component is due to the isocurvature nature of the pertu
tions. This is also one of the reasons why the acoustic pe
are very low, the other being that the vector~and tensor!
component is of the same order of magnitude as the sc
one. This enhances, in seed models, the CMB spectrum
large scales thereby lowering the acoustic peaks at s
scales. The result obtained is remarkably similar to the la
N case studied in Ref.@32#. The main difference here is tha
like for usual inflationary models, we dispose of a spect
index which is basically free. By choosing slightly blue
spectra, we can enhance the power on smaller scales.

In Fig. 5 we show the sum of the scalar, vector, and ten
contributions comparing the results from different tilts wi
and without a cosmological constant. The CMB power sp
tra obtained can have considerable acoustic peaks atl;250
to 300, which can be raised further by adding a nonvanish
cosmological constant. Increasing the tiltns raises the acous
tic peaks and moves them to slightly smaller scales.
found in Ref.@23#, the power spectrum of the scalar comp

FIG. 3. Time evolution of the source functionF11(k,h,h)k3,
with tilt ns51.1, for different modes,k50.001keq , k50.01keq ,
k50.1keq , k5keq , and k510keq . For super-horizon modes, th
correlatorF11 decays likeh122ns/k4. As soon as a mode enters th
horizon the corresponding correlator decays faster due to the o
lating behavior of the axion field. Before crossing the horizon,
other scalar equal time correlators show the same power law be
ior while the vector correlatorG(k,h,h)}h122ns/k2 and the tensor
correlatorH(k,h,h)}h122ns ~independent ofk!.
1-10
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nent is always blue. The tensor and vector component co
terbalance the increase of the tilt, maintaining a nearly sc
invariant spectrum on large scales. The models can be cle
discriminated from the common inflationary spectra by th
isocurvature hump and by the position of the first peak
discussion on the comparison of these results with rec
CMB data will be given in Sec. IV.

We have also computed the CMB polarization for o
model. The result for two different spectral indices is sho
in Fig. 6 where we compare it with the polarization fro
usual inflationary models. It is interesting to note that o
models show a characteristic ‘‘polarization hump’’ which
significantly smaller in inflationary models. The polarizatio
‘‘hump’’ is completely suppressed for topological defec
due to causality@38# and represents a very characteristic s
nature of ‘‘acausal seed models’’ like the one under cons
eration.

B. Decoherence

In order to estimate the accuracy of the results found
the preceding subsection, we discuss here the decoheren
the axion seeds showing that the difference between the
herent approximation and the full incoherent calculation
very small. The decoherence is tested only for the sc
component of the spectrum, where it may lead to ‘‘smear
out’’ of the acoustic oscillations. Its effects on vector a
tensor perturbations are expected to be small.

We first introduce the property of ‘‘scaling’’ for the axio
seeds. When working with seeds, to solve the problem of
enormous dynamical range2 needed to compute theCl ’s

2To compute the CMB and dark matter power spectra, we nee
know the seed functions over a dynamical range ofkmax/kmin

;30 000 and this for all timesh in<h, h8<h0 with kh in!1. This
gives finally more than 1000 functions of two variables which ha
to be known accurately over a long time interval.

FIG. 4. The CMB anisotropy power spectrum for fluctuatio
induced by axion seeds with a tiltns51.1 andL50. This result is
computed within the coherent approximation. We show the sc
~dotted–dashed!, vector~dashed!, and tensor~dotted! contributions
separately as well as their sum~solid!.
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from l 52 to l 51500, one often makes use of scaling pro
erties. We call seeds scaling if their correlation functio
^S(k,h)S(k,h8)&, is scale free, i.e., the only dimension
parameters inFi j , G, andH are the variablesh, h8, andk
themselves. As we have already mentioned, axion seeds
not scaling since the correlation function contains factors
the form (k/k1)a. But such a simple prefactor can be writte
as

~k/k1!a5~kh!a/~k1h!a

and does not enter the costly numerical integration. Num
cal calculations are reduced greatly if one can write the c
relation function in the form

Fi j ~k,h,h8!5 f ~Ahh8,k1!Ci j ~y,r !,

G~k,h,h8!5g~Ahh8,k1!W~y,r !, ~3.4!

H~k,h,h8!5h~Ahh8,k1!T~y,r !,

wherey[kAhh8 and r[Ah8/h, and f, g, andh are given
explicitly. The matrix Ci j and the functionsW and T are
dimensionless by construction. In the following we shall c
this behavior ‘‘modified scaling.’’

But even after this extraction of the explicit breaking
scaling, our source does not exactly obey ‘‘modified sc
ing’’ due to the radiation-matter transition. As one can s
immediately from the evolution equation of the axions in t
post-big bang phase, Eq.~2.32!, the extra dimensional pa
rameter implicitly contained in the unequal time correlato
is h* which comes from the expression for the scale factoa,
Eq. ~2.19!. The radiation-matter transition introduces th
new scaleh* and thereby spoils the modified scaling beha
ior of the axion seeds.3 However, deep in the radiation o

to

e 3This breaking of scale invariance is also found in models w
topological defects.

ar

FIG. 5. The CMB anisotropy power spectrum for fluctuatio
induced by axion seeds. We show the sum of the scalar, vector,
tensor contributions for five different tilts, withVL50 ~solid! and
VL50.7 ~long dashed!. The tilt is raising from bottom to top,ns

51.1,1.2,1.3,1.4,1.5.
1-11
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FIG. 6. The CMB polarization
power spectrum in linear scal
~left! and log scale~right! for fluc-
tuations induced by axion seed
and shown for two different tilts,
with VL50.7, ns51.3 ~lower
solid line!, and ns51.5 ~upper
solid line!, are compared with the
standard inflation result~dashed
line! for the same cosmologica
parameters. Polarization clearl
distinguishes between inflation
and axion seeds, especially via th
isocurvature hump.
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matter era,h!h* or h@h* , respectively, the reduced co
relation functions do obey scaling. In order to avoid th
problem and to simplify the numerical calculations, w
therefore compute the axion field according to the equa
for the pure radiation era, i.e., settinga(h)5h. We call this
the radiation approximation. This approximation affects
correlators and the CMB anisotropy power spectrum, es
cially at large angular scales, but is expected not to di
significantly from the correct results on the scales of
acoustic peaks, and it allows us to obtain sources which o
modified scaling.

In the coherent case, where we just need the equal
correlators, the numerical requirements have not been
involved and we have not been pushed to the radiation
proximation. But, as we shall see, the fully decoherent c
culation will not change the results considerably and the
fore an enormous numerical effort, which would be need
to compute the unequal time correlators without any use
scaling behavior, is not justified for this simple test.

In the matter dominated era, axion seeds are amplified
quantum particle creation while in the radiation approxim
tion they do not experience this amplification. Neverthele
axions are massless particles and they behave like a pe
radiation fluid. Thus, their energy density decreases as 1a4,
faster than the cosmic fluid in a matter dominated unive
wherea}h2 andr}a23, than in a radiation dominated un
verse, wherea}h andr}a24. This leads one to some ove
estimation of the sources ath.h* in the radiation approxi-
mation.

In Fig. 7 we compare the time behavior of one of t
equal time correlators taking into account the radiation m
ter transition~dashed! with those obtained in the radiatio
approximation ~solid line! for two different values ofk.
Modes that enter the horizon before matter-radiation eq
ity, k.keq , do not feel quantum particle creation; therefo
there is no difference between the full result and the radia
approximation on super-horizon scales. Inside the horizon
the matter era the mode decays faster than in the radia
approximation. Modes which enter the horizon after equal
k,keq , get first amplified by particle creation, an effe
which is missed in the radiation approximation, but then
cay faster than in the radiation approximation. As can
seen in Fig. 8, the slower decay has consequences on
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CMB anisotropy power spectrum: using the radiation a
proximation somewhat enhances the Sachs–Wolfe pla
and the first peak.

We now compute the CMB anisotropies in the full dec
herent case for the radiation approximation, making use
modified scaling. We restrict our attention to the scalar co
ponent, where decoherence can be important.

As explained in Eq.~3.4! we write the scalar correlation
matrix Fi j ~for ns51) as

Fi j ~k,h,h8!5~hh8!3/2Ci j ~y,r !, ~3.5!

whereCi j is only function ofy and r and hence dimension
less. The matrixCi j is clearly symmetric underr→1/r as

FIG. 7. Time behavior ofF11(k,h,h)k3, with spectral index
ns51.1, for a mode which enters the horizon before matt
radiation equality,w(k510keq ,h), and after, w(k50.1keq ,h).
Solid lines show the modes in the radiation approximation, das
lines without approximation. Fork.keq there is no difference on
super-horizon scales, while fork,keq the additional amplification
experienced in the matter dominated phase is lost in the radia
approximation. On subhorizon scales, the radiation approxima
decays slower than the correct result. A similar behavior is fou
for the other correlators.
1-12
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can be seen in Fig. 9. Fory,1 the sources decay like 1/y
and after horizon crossing they begin to decay faster du
oscillations.

The source correlation matrixCi j can now be considere
as kernel of a positive Hermitian operator in the variab
x5kh5y/r and x85kh85yr, which can be diagonalized
@32#,

Ci j ~x,x8!5(
n

lnv in~x!v jn~x8!, ~3.6!

where $v in% is an orthonormal series of eigenvectors~or-
dered according to the amplitude of the corresponding eig
values! of the operatorCi j for a given weight functionw.
The eigenvectors and the eigenvalues depend on the w
function w which can be chosen to optimize the speed
convergence of the sums~3.6!.

Inserting Eq.~3.6! in Eq. ~2.39! leads to

FIG. 8. Scalar contribution to the CMB angular power spectru
computed in the pure radiation approximation~solid line! and with-
out approximation~dashed line!, with an axion spectral indexns

51.1 andL50.
063501
to

-

ht
f

^Xi~k,h0!Xj~k,h0!&5(
n

l~n!Xi
~n!~k,h0!Xj

~n!~k,h0!,

~3.7!

whereXi
(n)(h0) is the solution of Eq.~2.36! with determin-

istic source termv i
(n) ,

Xj
~n!~k,h0!5E

h in

h0
dh G~k,h0 ,h! j l v l

~n!~k,x!. ~3.8!

For the scalar CMB anisotropy spectrum this gives

Cl
~S!5 (

n51

N

ln
~S!Cl

~Sn! ; ~3.9!

Cl
(S) is the scalar component of the CMB anisotropy indu

by the deterministic sourcevn andN is the number of eigen
values which have to be considered to achieve good a
racy.

In our model we actually find it easier to diagonalize
matrix

C̃i j ~x,x8!5Ci j ~x,x8!Axx8,

whose diagonal is flat forx,0.01, exactly as in the large-N
and texture models studied in Ref.@32#. In this case we hav

Ci j ~x,x8!5(
n

N

l̃n

ṽ in~x!

Ax

ṽ jn~x8!

Ax8
, ~3.10!

whereṽ jn andl̃n are the eigenvectors and the eigenvalue
the matrixC̃i j .

We diagonalize the matrixC̃i j using the logarithmic
weight functionw51/x which allows us to sample the ran
of scales of interest more evenly. In Fig. 10 we show
eigenvectors decomposition of one of the scalar correla
Note that a rather high number of eigenvectors and eigen
ues is required to reach a good accuracy in the approx
tion of the diagonal of the correlation function. Summing

,

FIG. 9. The correlatorC11(y,r ) is shown. In the left panel the solid, dashed, and dotted lines, respectively, representC11(1
31027,r ), C11(131024,r ), and C11(0.03,r ). In the right panel the solid, dashed, and dotted lines, respectively, representC11(y,1),
C11(y,0.3), andC11(y,0.1). The other scalar correlatorsC22 andC12 behave similarly.
-13
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F. VERNIZZI, A. MELCHIORRI, AND R. DURRER PHYSICAL REVIEW D63 063501
N550 eigenvectors the convergence is guaranteed;
summed up correlation function reproduces the origina
better than 1%.

This is different from the large-N model, where about 20
eigenvectors suffice for the same accuracy. We assume
this difference is due to the slower decay of the source fu
tions. As can be seen from Fig. 10, the source function
decaying from its original value to about 1% over the int
val 0.1,kh,10, while in the large-N model this decay is
achieved in the interval 0.5,kh,4.

We now compute the scalar contribution to the CM
anisotropies using Eq.~3.9!. The result is shown in Fig. 11
We note that decoherence slightly reduces the amplitud

FIG. 10. The sum of the first few eigenfunctions ofC̃11(x,x8) is
shown for a weight functionw51/x. The first~dotted–dashed!, first
and second~short dashed!, first 10 ~long dashed!, and 50~solid!
eigenfunctions are summed up. The open circles represent the
correlation function. Here we only show the equal time diagona
the correlation matrix but the same convergence behavior is fo
in the Cl power spectrum which is sensitive to the full correlati
matrix.

FIG. 11. The scalar contribution to theCl
(S) power spectrum is

shown for a primordial spectral indexns51.1. From bottom to top,
the solid lines show the contributions of the sum of the first ten, fi
twenty, first thirty and first fortyCl

(Sn)’s. The thick solid line rep-
resents the full eigenvectors summation~up to N550) to be com-
pared to the perfect coherent approximation, shown by the da
line. The decoherence does not significantly wash out the aco
peak and the oscillations.
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the oscillations around the first peak leaving however
secondary peaks and their positions almost unaffected.
though axion perturbations are in principle incoherent, it
difficult to observe this from the CMB power spectrum. Th
effects of decoherence are indeed very weak and the s
trum obtained in the perfect coherent approximation rep
duces the decoherent result within less than 5%. We he
are confident to obtain a sufficient accuracy in the perfec
coherent approximation which we shall apply for the rest
this paper.

IV. COMPARISON WITH CMB ANISOTROPY DATA AND
MATTER PERTURBATIONS

In this section we compare the results found in the p
ceding section with data discussing in particular the con
quences of the normalization of CMB anisotropies to CO
and presenting the cosmological parameters favored by
model. In Sec. IV D we finally compute the dark matt
power spectrum and we compare it with data.

A. Normalization and the kink

Comparing our numerical result with the CMB data w
normalize our curve to the fluctuation amplitude observed
COBE. This provides a relation between the string scale
the scale of the breakkb . Since we ignore constant factors o
order unity in the overall amplitude in our calculation, th
result for the amplitude is not very precise, but certain
correct within a factor of about 2. For the best fit value of t
tilt, ns215«;0.33, our numerical result on the COB
scale~at l;10) is l ( l 11)Cl.0.3g1

4(h* kb)22«. Hereg1 is
the dimensionless string coupling constant given
v1 /mPlanck where v15k1 /a15H(h1) is the inverse string
scale. Comparing this with the COBE normalization,l ( l
11)ClT0

2.5225mK2, yields

h* kb5~2.13103g1
2!1/«. ~4.1!

For example, if the string scale is 1018GeV, so thatg1
;0.1, we getkb;h2/(2 kpc), where we have insertedh*
;20h2 Mpc. An interesting constraint comes from the fa
that the break in the spectrum should be on a scale whic
smaller than the scale represented by the first acoustic p
in order not to reduce the latter. Sinceh* corresponds to the
horizon scale at equality, this requiresh* kb*1 or v1(a1)
5H1*0.02mPlanck. Together with H1&0.1mPlanck, this
brackets the string scale just in the range where it is expe
for very different theoretical reasons.

The length-scale/energy-scale corresponding to the b
kb at the timehb , during the pre-big bang phase, when t
expansion law is supposed to change, is given by

utbu;uhbua~hb!/a0

;uhbu
a~hb!

a~h1!
10232

;uhbuUhb

h1
U21/4

10232;6310214cm;3 GeV21,

~4.2!
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES . . . PHYSICAL REVIEW D 63 063501
where we have usedhb;h* ;20 Mpc andh1;0.1 cm. The
energy scale obtained in this way is uncertain with a facto
about 10.

In Fig. 12 we show the dependence of the CMB anis
ropy spectrum on the position of the break. Typically, t
break lowers the second and subsequent acoustic peaks
it does not substantially affect the first peak.

B. Cosmological parameters

In the last two years, a peak in the CMB power spectr
at l;200 as been detected by several different experime
most notably TOCO98 @1#, B97 @2#, B98 @3#, and
MAXIMA-1 @4#. Among them, the BOOMERanG-98 powe
spectrum@3# reported the best and at the same time m
conservative detection, although coming from only 5%
their overall data set. The position, amplitude and shape
the peak can be fitted by the power spectra expected in
simplest inflationary scenario based on adiabatic pertu
tions in a spatially flat universe@5,8#. Therefore, this peak
represents the biggest challenge for the model prese
here.

We want to investigate whether a suitable choice of c
mological parameters can bring our model in agreement w
the above mentioned data. This question is also very imp
tant in view of the usual ‘‘determination of the cosmologic
parameters’’ from CMB anisotropies, in the sense tha
shows how the results can change when assuming a diffe
model of structure formation. In other words the so-cal
‘‘measurements’’ of cosmological parameters from CM
anisotropies are strongly model dependent.

The peak position is determined mainly by the angu
diameter distance parameter

R215A Vm

uVKu
F~y!

2
. ~4.3!

HereVK512Vm2VL is the curvature parameter and

FIG. 12. The influence of the break position on the CMB pow
spectrum. The top solid line is the spectrum without break. T
dashed lines from top to bottom represent a spectrum with brea
kb53/h* , 2/h* , and 1/h* , respectively.
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F~y!5H sinhy ~open!

y ~flat!

siny ~closed!

~4.4!

depends on the geometry of the universe. The variabley is
the following integral:

y5AuVKu E
0

zdec dz

@Vm~11z!31VK~11z!21VL#1/2.

~4.5!

As pointed out in Ref.@39#, the conditionR5constant
identifies curves in theVm2VL plane, with nearly degener
ate Cl spectra, providing that the baryon density parame
Vbaryon is kept constant.

In Fig. 13 we plot likelihood contours, obtained as fo
lows: we rescale the string cosmology power spectra plo
in Fig. 5, both in amplitudeA ~in COBE units! and position
R. We compare the resulting spectra with the BOOMERa
and MAXIMA-1 data in the region up tol<400 by a simple
x2 fit. We find that the 68% confidence limit forR margin-
alized overA is 1.50<R<1.63 withR51.57 as best fit~see
Fig. 13!.

In Fig. 14 the confidence levels onR are translated to
confidence levels in theVL2Vm plane which are then com
bined with the current SN1a results@40#. It is clear from this
figure that the model can be brought in reasonable agreem
with observations only if the universe is closed. The dev
tion from flatness becomes less and less important tow
Vm→0, where all theR5const lines converge atVL51.
While the region withVm.1 can be safely excluded from
different cosmological observations, a moderately clos
universe withVL;0.85 andVm;0.4 is compatible with
supernova type Ia~SNIa! results and also with estimate
for Vm from cluster abundance and x-ray data~see, e.g.,
Ref. @41#!.

r
e
at

FIG. 13. Confidence levels~68%, 95%, and 99%! for the res-
caling factorR and the amplitude in COBE unitsA, from the recent
BOOMERanG and MAXIMA-1 observations.
1-15
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F. VERNIZZI, A. MELCHIORRI, AND R. DURRER PHYSICAL REVIEW D63 063501
As we have seen, the position of the first acoustic p
can be adjusted by choosingVL andVm so that the resulting
universe is marginally closed. Nonetheless, the width of
peak, compressed by the increase ofR, is still not in very
good agreement with the data, as well as the isocurva
hump. The resulting normalizedx2 is about;1.8 for the best
fit, which ‘‘excludes’’ the model at 70% confidence. One h
however to keep in mind that theCl ’s are not Gaussian an
therefore the probability for our model to lead to the me
sured CMB anisotropies is even somewhat higher than 3
In Fig. 15 two theoretical CMB spectra normalized to t
COBE data are shown together with the MAXIMA-1 an
BOOMERanG98 data. We did not optimize on the axi
spectrum, or the baryon density parameter, but we ch
ns51.33,Vm50.4, andVbaryon50.05.

Playing with the break-scalekb we can in principle lower
the second peak leaving the first one almost unchanged. N
ertheless, the position of the second peak is different fr
the one indicated by inflationary models and the data. In

FIG. 14. The 68%, 95%, and 99% confidence levels for
cosmological parametersVL and Vm , from the peak position de
tected by BOOMERanG and MAXIMA-1 for the model present
in this paper~dashed!. The solid contours are obtained including th
supernovae data.
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peak distance is therefore a better estimator of the validity
a model. Clearly more and better data around the isocu
ture hump region, i.e.,l;100, are needed to decide definite
whether the model is ruled out. This will most probably
achieved with the microwave anisotropy probe~MAP! satel-
lite @42# planned for launch in 2001.

C. Polarization

The polarization spectrum distinguishes easily betwe
adiabatic inflation and the axion seed model~see Fig. 16!.
The preferred closed universe for axion seeds translates
a smaller distance between polarization peaks. As the ph
cal distance between peaks depends only on the sound s
which is only slightly dependent onVbaryonh

2, a quantity
which is already tightly constrained by nucleosynthesis,
D l on which this distance projects is mainly determined
spatial curvature,VK @it depends also somewhat onVL as
can be seen from Eq.~4.5!#, and is independent on the mod
for the initial fluctuations.

e
FIG. 16. The CMB polarization spectrum of our model~solid

line! for the best fit parameters is compared with the inflation
CMB polarization spectrum in a critical universe withVL50.7.
The fact that in our model the universe is closed is visible in
smaller distances between successive peaks.
o

r

e
e

FIG. 15. Two theoretical CMB
anisotropy spectra normalized t
the COBE data, withVL50.4
and axionic spectral indexns

51.33, are compared with the
MAXIMA-1 and BOOMER-
anG98 data. From left to right, ou
model has a break atkb53/h*
andkb51/h* , respectively. Low-
ering kb we subtract power on
small scale and we can lower th
second peak leaving the first on
almost unchanged.
1-16
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FIG. 17. The linear dark matter power spectra for fluctuations induced by axion seeds with spectral indexns51.33 and a break in the
spectrum at~a! kb53/h* and ~b! kb51/h* , for a flat universe withVm50.4 ~dotted!, Vm50.3 ~dotted–dashed!, andVm50.25 ~dashed!
are compared with data. We assume an IRAS galaxies bias ofbI5Vm
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D. The dark matter power spectrum

The computation of the dark matter power spectrum h
already been performed in Ref.@25# where a considerable
deviation from the data was found. In this work we repe
this computation taking into account the preferred values
the axion spectral index and of the matter energy den
found from CMB data, and we introduce the break in t
axion spectrum discussed above. With this additional inpu
is possible to establish reasonable agreement between
data and the dark matter power spectrum~see Fig. 17!.

Since the computation of the theoretical matter pow
spectrum for a closed universe is relatively involved a
since, for the purpose of comparing the theoretical spect
with observations, we are interested in scales much be
the curvature scale, we have computed it for a flat unive
with matter and a cosmological constant, assuming that
contribution from curvature is negligible on the scales un
consideration. Indeed, what really plays a role for the ma
power spectrum is the matter content,Vm , which fixes the
time of equality between matter and radiation, determi
when structures can start growing, and fixes the position
the bend in the power spectrum.

In Fig. 17 we present the theoretical dark matter pow
spectra together with the data as compiled by Peacock
Dodds@43#. Depending on the scale of the break in the ax
spectrum,lb51/kb , our model can be compatible with da
for different values ofVm in the range 0.2<Vm<0.4. The
role of the break is the following: iflb is small we subtract
power only from small scales and we are able to reprodu
power spectrum in good agreement with data even ifVm is
relatively high. However, if we do not introduce any break
the axion spectrum we find too much power on small sca
and our theoretical dark matter power spectrum is incom
ible with data~compare our present result with those fou
in Ref. @25#!.

The root mean square mass fluctuation within a ball
radius 8h21Mpc for the model withns51.33, kb53/h* ,
and Vm50.25 and for the model withns51.33, kb
06350
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51/h* , and Vm50.4 ares850.85 ands850.74, respec-
tively. Analysis of the abundance of galaxy clusters sugge
s8;0.5Vm

20.5 @44#.

E. Conclusions

We have shown that it is possible to choose cosmolog
parameters which bring our model in reasonable agreem
with the present CMB anisotropy measurements, which
however less favorable than the striking fit of simple fl
adiabatic inflationary models. This is our main result.

Even if our model will turn out to disagree with bette
data, we believe that we learn the important lesson that c
mological parameters obtained from CMB anisotropies
strongly model dependent, a point which is swept under
carpet by the vast majority of the circulating ‘‘paramete
fitting’’ literature. We believe that it is very important in th
future to concentrate on model independent quantities,
interpeak distances, to determine cosmological paramete

V. GRAVITATIONAL WAVES

Gravitational waves represent one of the most powe
tools to investigate the early history of the universe. Th
decouple at a temperature comparable to the string s
which makes them an important window for cosmologic
phenomena related to the string theory domain. In this s
tion we show that axions can contribute substantially to
production of the gravitational wave background in the p
big bang model, acting as a source in the tensor perturba
equation. This leads to a spectrum which is different fro
the standard gravitational wave background of string cosm
ogy based on the ‘‘direct mechanism’’ of graviton produ
tion by amplification of quantum vacuum fluctuation. Th
new ‘‘indirect mechanism’’ leads to a flat spectrum and c
easily be distinguished from the direct one. Indeed,
we shall see, the axion induced gravity wave backgrou
dominates the ‘‘direct background’’ at small frequencies a
1-17
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represents an important observational constraint for st
cosmology.

A. Direct production—Amplification of vacuum fluctuations

So far, amplification of quantum vacuum fluctuatio
have been considered as the principal mechanism for
production of gravitational waves during the pre-big ba
phase@45–47#. During the dilaton era, before the big ban
when the scale factor evolves according to Eq.~2.9!, the
Fourier modes of metric tensor perturbations satisfy an e
lution equation similar to Eq.~2.13!, namely,

c̈k
T1S k22

äT

aT
Dck

T50, ~5.1!

whereaT5ae2f/2 is the pump field of gravity waves andck
T

is the canonical variable for tensor modes of the metric.
the isotropic case discussed in this work, one find thataT
}uhu1/2 independently on the evolution and number of
mensions during the pre-big bang phase. After proper n
malization to the incoming vacuum, this yields the solutio

ck
T5~2h!1/2H0

~2!~kh!, h,2h1 . ~5.2!

After the big bang, in the radiation dominated era,h
.h1 , the solutions of Eq.~5.1! are simple plane waves
From the matching conditions between these two regim
applying the same procedure as discussed in Sec. II B for
axion field, one obtains the following spectrum of gravit
tional waves,

Vg;
v1

4

H0
2mPlanck

2 S v

v1
D 3

;g1
2S v

v1
D 3

Vg , ~5.3!

which is a tilted spectrum,}v3, normalized tog1
2 at the

string scale. One actually supposes that, at a string ep
hs,2h1 , the dilaton-vacuum regime behavior of Eq.~2.9!
breaks down and the universe undergoes a de Sitter ex
sion with linearly growing dilaton, which lasts until the be
ginning of the radiation dominated erah1 . This phase leads
to a nearly flat gravitational wave spectrum at very sm
scales. The normalization of the spectrum to the string c
pling g1 can then be performed at a lower frequency,vs
,v1 , leading to a somewhat higher density of directly pr
duced gravitons than the one discussed here. This is
important in order to make the direct background observa
and still compatible with nucleosynthesis.~See Ref.@48# and
references therein for more details.! A more detailed discus
sion on the important signatures and observational co
quences of this direct production of gravitational waves c
be found in Ref.@49# and references therein.

B. Indirect production—Axion source

Let us discuss now the production of a stochastic grav
tional wave background generated by the presence of a
seeds. This indirect background will be superimposed to
direct one discussed above and will dominate the total sp
trum at large scales. These two production mechanisms
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fundamentally different. While the direct production o
gravitons takes place during the pre-big bang phase an
due to the amplification of vacuum fluctuations, the indire
production is sourced by the axions during the post-big b
era.

The creation, propagation, and damping of gravitatio
waves in a Friedman background are described by the te
perturbation equation~see, e.g., Ref.@50#!,

ḧi j 12
ȧ

a
ḣi j 2Dhi j 516pGa2t i j , ~5.4!

where tensor perturbations in the metric are parametrized
the traceless, divergence-free, symmetric tensor fieldhi j ,

gmn5ḡmn1a2~h!hmn , hm
m505“nhm

n , ~5.5!

which is a gauge invariant variable. As before a dot deno
the derivative with respect to conformal time. Equation~5.4!
is a wave equation with source termt i j .

The tensor fieldhi j is usually decomposed into two pola
ization states as

hi j ~x,h!5h3~x,h!e i j
3~x!1h1~x,h!e i j

1~x!, ~5.6!

wheree i j
35ei

1ej
12ei

2ej
2 ande i j

15ei
1ej

21ei
2ej

1 are the polariza-
tion tensor fields and (e1,e2,e3) is a local orthonormal basis
~the wave is propagating in thee3 direction!.

The energy density of gravitational waves is given by t
00 component of the energy momentum tensor of the wa
This can be defined as a space-average over several os
tions,

rg5
^ḣi j ḣ

i j &
16pGa2 5

^ḣ3
2 &1^ḣ1

2 &
16pGa2 . ~5.7!

We decomposeh3 andh1 in Fourier modes,

hl~x,h!5E d3k

~2p!3 eik"xhl~k,h!, l53,1; ~5.8!

therefore

ḣl~x,h!5E d3k

~2p!3 eik"xḣl~k,h!. ~5.9!

The spatial average then becomes

^ḣl
2&5E d3k

~2p!3

d3k8

~2p!3 eix•~k1k8!^ḣl~k,h!ḣl~k8,h!&,

~5.10!

and we can use the stochastic average condition

^ḣl~k!ḣl8~k8!&5~2p!3d3~k2k8!dll8uḣl~k!u2,
~5.11!

which yields, under the hypothesis of statistical isotropy,

rg5
1

~pa!216pG E dk k2uḣl~k,h!u2. ~5.12!
1-18
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We now compute the spectrumuḣl(k,h)u2 in the coherent
approximation. For this we introduce the determinis
source functionP(k,h) defined by

4pGa2P~k,h![ AH~k,h,h!, ~5.13!

@for the functionH, see Eq.~2.68!#. The polarization tensors

satisfy e i j
l el8

i j
52dl

l8 and we can hence rewrite Eq.~5.4! in
momentum space as

ḧl12
ȧ

a
ḣl1k2hl58pGa2P. ~5.14!

The factor 1/2 comes from the fact thatP sources both
modes3 and 1 of hi j and, assuming again statistical is
tropy, each mode is sourced with the same strength. S
we want to compute a gravitational wave spectrum we o
consider modes which enter the horizon in the radiat
dominated era,kh* .1 andȧ/a.1/h, the other modes be
ing uninteresting~too large wavelength! for possible obser-
vations. Therefore we also consider modes far from CO
scale,k@kb , and we can comfortably assume a flat axi
spectral index,ns51. We then write Eq.~5.14! as

hl91
2

x
hl81hl5H f ~k!/Ax, x<1 ~active source!,

0, x>1 ~dead source!,
~5.15!

where the conformal time derivative has been replaced
the derivative with respect tox5kh. In this equation we
assume that the axion source can be approximated b
power law behavior outside the horizon which is of the fo

8pGa2)~k,x!5x21/2k2f ~k!, f ~k!.8pg1
2k23/2,

~5.16!

and can be considered negligible inside the horizon wh
the correlators decay quickly.

The homogeneous solutions to this equation are
spherical Bessel functions of index zero,j 0(x) andy0(x). In
the regime, x<1, the solutions can be found with th
Wronskian method, which yields

hl~k,x!5 f ~k!@c1~x! j 0~x!1c2~x!y0~x!#, x<1,
~5.17!

where

c1~x!5E
0

1

dx x1/2cosx, c2~x!5E
0

1

dx x1/2sinx,

~5.18!

while in the second regime,x>1, they are a linear combina
tion of the homogeneous solutions,

hl~k,x!5A~k! j 0~x!1B~k!y0~x!, x>1. ~5.19!

By matching Eqs.~5.17! and ~5.19! at x51 we find

hl~k,h!5 f ~k!@c1~1! j 0~kh!1c2~1!y0~kh!#,
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A~k!5 f ~k!c1~1!, B~k!5 f ~k!c2~1!, ~5.20!

which yields, forx@1, ḣl;khl; f (k)/h, and thus

uḣl~k,h!u2.
~8p!2g1

4

h2 k23. ~5.21!

Using Eq.~5.12! we hence find

rg5
4g1

4

pGa2h2 E dk

k
or

drg

d logk
5

4g1
4

pGa2h2 , ~5.22!

which corresponds to a flat spectrum of gravitational wav
On the other hand, at early time the radiation energy d

sity, rg , dominates the Friedman equation which becom

ȧ2

a2 5
8pG

3
rga2. ~5.23!

With ȧ/a.1/h we can write the gravitational wave back
ground spectrum produced by the axion field as

Vg5
rg

rg
Vg;10g1

4Vg . ~5.24!

C. Observational consequences

In the preceding subsection we derived the spectrum
gravitational waves induced by axion seeds and we fo
that it is flat on scales much smaller than the COBE sc
and normalized such as to lead to the correct amplitude
fluctuations in the CMB anisotropies.

Its normalization depends on the fundamental ratio
tween the string and Planck mass which is usually taken
be of the order ofg1;0.140.01@53#. The energy density of
induced gravity waves is proportional to the fourth power
g1 like the CMB anisotropy spectrum. Since the COBE no
malization also depends onkb @see Eq.~4.1!#, which plays no
rôle for the gravity wave spectrum on the scales conside
here,g1 alone is still allowed to vary in the range cited abo
even though Eq.~4.1! provides a precise constraint for
combination ofg1 andkb . Using the previous values forg1
we find a flat spectrum of gravity waves withh2Vg;4
3(1028410212), a range which, most probably, will b
reached by the third generation interferometers@51#. This
renders the indirect gravity wave background an import
observable of string cosmology. Note also that in the cas
its detection it would provide a direct measurement of
string scale.

At present the most relevant observational bound fo
gravity wave background comes from pulsars. In particu
the timing of the millisecond binary pulsar implies a limit o
any stochastic gravity wave background ofh2Vg ~at f 54.4
31029 Hz) ,131028 ~at 95% c.l.! @54#, which transforms
in our case into a limit ong1&0.07 in this model.

The direct gravitational wave background has a blue sp
trum and therefore dominates the indirect background
1-19



y

w
r-

k
d

ee
e

sc

hat
m
at

ition
with

eV.
ons

ak

s

ith
s to
d

ure
ut
arly
os.
tly

en-
type
the
le
n-
III

n-
is

ight
self
h-
the
the
-

tter
um.
on-
uch

is-
s-
-
One
r-

nn
or
l-

de

f

ed

u
lim
-

F. VERNIZZI, A. MELCHIORRI, AND R. DURRER PHYSICAL REVIEW D63 063501
small scales, as shown in Fig. 18.4 The crossover frequenc
vc between the two regimes is determined byg1 and the
normalization frequencyvs discussed above,

vc5g1
2/3vs . ~5.25!

This crossover may actually, depending on the unkno
value vs , fall into the range of frequencies at which inte
ferometers will be operating.

Finally, we would like to point out that, like the CMB
anisotropies of this model, the indirect gravity wave bac
ground considered here is not Gaussian, which can lea
interesting observational consequences.

VI. CONCLUSIONS

We have investigated the consequences of axion s
which naturally occur in the context of string cosmology. W
found that these seeds may induce the observed large

4Sensitivity curves for the Laser Interferometer Space Ante
~LISA! and Laser Interferometric Gravitational Wave Observat
~LIGO! are based on@51,52# and references therein. We acknow
edge Carlo Ungarelli.

FIG. 18. The gravitational wave spectrum in pre-big bang mo
for a value ofg150.03. The directly produced background~dashed
line! has been normalized to string mass at a frequency of s

5500 Hz. This frequency corresponds to the timehs5
21/(2p f sa(h0)) for the transition between the dilaton-dominat
regime and the de Sitter phase in the pre-big bang era~see above!.
The solid line represents the sum of the direct and indirect prod
tion of gravitational wave background. The analysis has been
ited to frequenciesf @ f b , where f b denotes the frequency corre
sponding to the scale of the break.
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structure and CMB anisotropies in the universe provided t
there is a break in the primordial axion power spectru
which from slightly blue on very large scales turns to a fl
spectrum on scales smaller than the break,k.kb . Such a
break appears if the expansion law undergoes a trans
during the pre-big bang phase. For the scenario to agree
observations the break must occur athb;20.3h* , which
corresponds to an energy scale of the order of several G

The axion seed model leads to isocurvature fluctuati
with important contributions from vectors~about 50%! and
tensors~about 15%! on large scales. The first acoustic pe
in the CMB anisotropy power spectrum is aroundl;300 for
a flat model,V5Vl1Vm51. To reproduce observation
the universe has to be closed with parameters,VL;0.85 and
Vm;0.4. This parameter choice is also in agreement w
supernovae and cluster data. Even though our model lead
a largerx2 when fit to the CMB data it cannot be exclude
by the presently available data. However, the ‘‘isocurvat
hump’’ at l;40 and the reduction not only of the second b
also of the third acoustic peaks are signatures which cle
distinguish the model from standard inflationary scenari
Furthermore the CMB polarization spectrum significan
differs from the inflationary result.

We have also studied gravitational waves which are g
erated during the post-big bang phase by the tensor
anisotropic stresses in the energy-momentum tensor of
axion field. We found that they lead to a flat observab
background of gravity waves which can give stringent co
straints on the model if detected by the planned LIGO-
and LISA observatories.

As the model studied is very predictive let us finally me
tion that its failure to reproduce observational data, which
hinted by present CMB anisotropy measurements and m
be reinforced by future more accurate data, does not by it
rule out string cosmology. An additional important hypot
esis of the model is that nongravitational interactions of
axion field with the dark matter may be neglected and
axion plays the role of a ‘‘seed.’’ If this hypothesis is re
laxed, the axions may interact with radiation and dark ma
and even lead to a standard adiabatic fluctuation spectr
This idea deserves further study, but most probably the n
Gaussian character of the perturbations also survives in s
a scenario.
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