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Cosmic microwave background anisotropies from pre-big bang cosmology
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We present an alternative scenario for cosmic structure formation where initial fluctuations are due to
Kalb-Ramond axions produced during a pre-big bang phase of inflation. We investigate whether this scenario,
where the fluctuations are induced by seeds and therefore are of isocurvature nature, can be brought in
agreement with present observations by a suitable choice of cosmological parameters. We also discuss several
observational signatures which can distinguish axion seeds from standard inflationary models. We finally
discuss the gravitational wave background induced in this model and we show that it may be well within the
range of future observations.
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I. INTRODUCTION tween the pre-big bang and the post-big bang phase and the
stabilization of the dilaton should take plagE2]. Further-
It is commonly assumed that an inflationary phase is necmore, opinions vary as to whether the initial conditions in the
essary in order to construct a consistent cosmological modepre-big bang need a large amount of fine turlibg,13. On
The familiar adiabatic inflationary scenario owes its popular-a more phenomenological side, it is nevertheless important to
ity to the fact that it solves the horizon and flatness problemstudy whether this scenario can provide the features that we
and at the same time provides a consistent model for thebserve in the universe today. For recent review papers dis-
origin of cosmological perturbations. In particular, it natu- cussing several of the previous points we refer the reader to
rally leads to a fla(Harrison—Zel'dovich spectrum of per-  Refs.[14,15. For a comparison of the pre-big bang model
turbations on large scale and to coherent acoustic oscillationgith new cosmological models based on string theory see
on intermediate scales which manifest themselves aRef.[16].
“peaks” in the cosmic microwave backgrountCMB) A realistic cosmological model has to generate large-scale

anisotropies. matter perturbations and to reproduce the slope and the am-

After the recent measurements of the intermediate Scalﬁlitude of CMB anisotropy spectrum. The pre-big bang sce-
CMB anisotropy power spectrufii—4], flat adiabatic mod- nario was thought for some time to be unable to provide a

els seem to be favord8—8|. Nevertheless none of the many scale-invariant spectrum of perturbations. First-order tensor

inflationary scenarios which have been d(_eveloped during thgnd scalar perturbations in the metric, as well as perturba-
last 20 years has been constructed consistently on the bast%’ns of the moduli fields, were found t(') be characterized b
of a serious theory of high energy physics; inflation has al- ! y

ways been seen as an effective model pointing to a great&xtremely “blue” spectrd 17]. This large tilt, together with

more fundamental theory which has not been clarified so fa Natural normalization imposed by the string cutoff at the

We believe that superstrings are presently the most promiss_hortest amplified scales, makg _their contribution to large-
ing candidate for such a theory but on the other hand it i$c@le structure completely negligible. _
well known that it is not possible to derive an inflationary ~However, it was later realized that the spectral tilt of the
model from a String theory effective action on a generiCaXion, a universal field in String theory, can assume a whole
background, the reason being that the nonminimal couplingiange of values depending on the behavior of the internal and
between the dilaton and the metric slows down the expansiogxternal dimensions and in particular it can naturally provide
of the universe spoiling the solution of the problems fora scale-invariant spectrum of perturbati¢f8—20. This re-
which inflation has been invoked. sult reopened the possibility that pre-big bang cosmology
The pre-big bang idef®] represents in this context one of may contain a natural mechanism for generating large-scale
the first and most interesting attempts to develop a new co$=MB anisotropies via the “seed” mechanidi1].
mological scenario which solves the horizon and flatness This possibility was analyzed in Reff22,23 for mass-
problems, based on string theory. In this radically new picless axions and in Ref24] for very light axions. These
ture, the underlying duality symmetf§0] present in the low analytical treatments are restricted to large angular scales.
energy sector of string theory naturally selects perturbativéVe have extended the study to smaller scales with the help
initial conditions and automatically leads to an inflationaryof numerical calculations. First results of this work have
phase prior to the big bang during which curvature and thdeen reported in a lettdi25], where a strong correlation
dilaton are growind9,11]. Besides its many appealing fea- between the axion spectrum,., and the height of the peak
tures, this scenario is known to face several problems such agas noticed. A range of values aroungl= 1.4 (slightly blue
the lack of a complete and consistent description of the higlspectra appeared to be favored by a simultaneous fit to the
coupling and high curvature regime where the transition benormalization on large angular scales observed by the cos-
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mic background explorefCOBE) [26] and the data on the
first acoustic peak available at that time. SlOZJ' d*%%/[g1de” 1 Ryg+ (V d10)?— 15 Higl,

In this companion paper we present a full explanation of (2.1
the details of these calculations for the CMB angular power
spectrum and for the dark matter power spectrum and wevhere we have included the 10-dimensional antisymmetric
study the problem of the “decoherence” of axion perturba-tensorH ,,,,= d;,B,,; ., but no gauge or fermion fields.
tions which has been ignored in the previous work. Further- We assume that the 10-dimensional metric can be factor-
more, we expand on the results for the observational signdzed into a “large” four-dimensional part and a “small”
tures presented in R€i25] and we discuss them in the light six-dimensional metric,
of the new CMB anisotropy data presently available by in-
vestigating the cosmological parameter space of the model. ds’=g,, dx* dx"+e*5; dX dx’ (2.2
We also discuss CMB polarization for our model and the
contribution of the gravitational wave background induced(x, »=0,...,3 andl, J=1,...,6), whereB depends only on
by axion perturbations. time, 8= B(t). If the six-dimensional piece is compactified

We will suppose for the rest of this work that modes withto a very small radius, the lowest energy Kaluza—Klein
frequencies relevant to CMB physics are unaffected by thenodes yield the four-dimensional actigh8],
transition from the pre- to the post-big bang phase. This may
seem a strong assumption given our ignorance on the grace- _ 1
ful exit and on the duration of the intermediate string phase. S:f d4x\/@e IR+(V$)?=3(VB)*~3€(Vo)?].
Indeed, the nature and features of the transition are still un- (2.3
known and may lead to important changes on the character-
istics of the axions spectrum, but we are confident that thi$lere we have introduced the four-dimensional axion field
can only affect scales much smaller than those we are inteflefined by
ested in: For this to hold, we just need that, at the moment
we enter the string phase, the CMB modes are well outside H#ve=eler PV 4o (2.4
the horizon and therefore not altered by any causal process. ) o _
As shown in Ref[27] using general arguments, the long- T_he ac_tlon(2._3) e_md _the definition(2.4) include _the _four-
wavelength part of the solution to the equation of motion ofdimensional dilation fieldg, the pseudoscalar axion field,
the axion field is always dominated by the contribution of thewhich represents the degrees of freedom of the antisymmet-
frozen modes even if the background evolution includes 4i¢ three tensor field, and a modulus field, which pa-
high-curvature phase in which the action and the perturbal@metrizes the radius, or the “breathing mode,” of the six-
tion equations are not known. This argument has been testéimensional internal space. Like the dilaton, also the axion
by numerical examples in Ref28] for a gravitational wave field (not to be confused with the Peccei-Quinn ajios
background spectrum. Recently a graceful exit model conuniversal in string theory. o
sidering general high-curvature and coupling corrections has Let us assume a homogeneous dilation backgrouhd,
appeared in the literatur29] and numerical tests on the =¢(t), and an external four-dimensional spacetime ad-

soon[30] to confirm our assumption. with scale factora(t),
The paper is organized as follows: in the next section we ) ) ) )
study axion production in the pre-big bang and explain the 9, =diad —1,a%(1),a%(1),a*(t)]. (2.9

details of the computation of the axion energy-momentum , i
tensor which plays the role of the “seed” in our model. In I the following we shall also make use of the metric
Sec. lll we determine the CMB anisotropy and dark matter
spectra. We study the problem of decoherence and show that
the coherent approximation is very good for this model. In . . .

Sec. IV we compare our result with CMB and supernovaWh(ire we have introduced the conforr_nal_ t|meg|ven_by_
data and present a cosmological parameter estimation for thgﬁ_dt/ a (we shall use an.ov.eEjot to mdu_:ate a derlyatlve
scenario. We also examine and discuss the normalization a th respect to conformal t|me,=_ (7/0777?' W'th. our 9h0|ce
the kink in the axion spectrum which is required to fit obser-° the exter.nal metric, the four-dimensional dilaton is related
vations. Section V is devoted to a novel prediction of axiont0 the 10-dimensional one by

seeds: the tensor component of their energy-momentum ten- b= 19— 68 2.7)

sor induces a gravity wave background which might be ob- 10 ' '
servable. In Sec. VI we summarize our conclusions.

g,,=a*(pdiad —1,1,1,1, (2.6)

When the axion field is trivialg= 0, or its contribution to
the global dynamics of the universe is negligible, the equa-
Il. AXION SEEDS FROM STRING COSMOLOGY tions derived from the actiof®.3) are invariant under duality

A. Extra dimensions in string cosmology transformations,

The minimal low energy effective action of the NS—NS a(t)—1/a(—t), o(t)—o(—t)—6In(a(—t)).
sector of string theory in the string frame is given [I3{] (2.9

063501-2



COSMIC MICROWAVE BACKGROUND ANISOTROPIS . . . PHYSICAL REVIEW D 63 063501

This invariance(scale factor dualityrepresents one of the The study of this equation is conveniently performed by us-
key motivations behind the pre-big bang scendfip The ing the canonical variable given by

field equations foml, ¢, and 8 are solved9] by the follow-

ing power laws, known as dilaton-vacuum solutions in the y=apo=ae’’c, (212

re-big bang forp<—17;:
P g g fom & which “diagonalizes” the perturbed action expanded up to

L\ sl(1-0) o\ d1-s) second order. The factar, is the so-called pump field of the
n n . . . . .
a( 7,):(_) , eﬁ(”)=<—) axion. The Fourier modeg,(#) satisfy a canonical linear
m 71 second-order equation, completely decoupled from the other
fields,
—7 (36—1)/(1-6)
e¢<”>=(— , (2.9 o, A
A

where and satisfy the Kasner constraint, This is the evolution equation for the axion field.

5 - Equation(2.13 is equivalent to the equation for a classi-
36°+6L°=1. (2.10 cal harmonic oscillator with parametric evolution driven by
the time dependent mass teédpR/a,. When the time evo-
Here — 7, is the (conforma) time at which curvature and |ution of the velocity of the pump fielda,, is sufficiently
dilaton become so large that loop corrections from stringslow such that, for a given modea,/a,<k?, we are in the
theory have to be taken into account. It is hoped that thesgdiabatic regime with the result that no particles are created.
corrections then lead to a radiation dominated Friedman uniwhen the acceleration in the pump field is high enough to
verse with “frozen” dilaton atn> 7. violate the adiabatic regime, quantum particle production
From these solutions one can see that, during the pre-bigtarts. The evolution of the axion field and the resulting spec-
bang phase, i.e., for negative conformal timea negatived  trum of particles are fully determined by the time behavior of
and a positive{ are required to make the external three-the pump field in the different phases of the universe. In
dimensional space expand and the internal six-dimensiongarticular, a strong difference in this behavior exists between
space contract. Therefoiehas to lie in the interva-1#¥3  the pre-big bang phase and the standard radiation and matter
=< 6<0, which leads always to a growing dilaton and grow-dominated eras in the post-big bang universe.
ing four-curvatureR~ (a/a?)?« 1/(an)?e«(— 5) ~2A=9), The pre-big bang phase is characterized by an accelerated
evolution of the pump field,

B. Amplification of axion quantum fluctuations 55— 1

In this section we briefly review the mechanism for the apx(—mn)? y= 2(1=9)’ (2.149
generation of a primordial quasi-scale-invariant spectrum

from the pre-big bang phase and we discuss the dependenggere 5<0 is the power which characterizes the evolution
of the spectral index on the evolution of the internal andyf the external dimensions, E€.9). Using Eq.(2.13, the

external dimensions of the pre-big bang universe. Using agyolution equation of the axion can be written as
initial conditions the axion field obtained during the pre-big

bang phase, we then analyze its evolution after the big bang . )

in a critical Friedmann—Lemaitre—Robertson—Walker btk

(FLRW) universe with and without cosmological constant,

paying particular attention to the frequency modes that entegere x=k 5. This equation is solved analytically in terms

into thg calcu_lanon of the CMB anisotropy power Spectrum. ¢ o Hankel functionsy?H and 771/2H(2) with w=|y
As in previous workg22-25 we suppose that the con- 1/2 w s

tribution pf the axion field to the equations of motlon_fqbr At very early time, a perturbation of given wave numker
a, and B is negligible and that the evolution of the dilaton, . C o . - :
: .~ " is well inside the horizonx|=|k#n|>1, and the solutions of
the moduli, and the scale factor are governed by the dilaton: . S . .
g. (2.195 are harmonic oscillations which can be consis-

vacuum solutiong2.9). Nevertheless, quantum fluctuations . )
. . tently normalized to the vacuum fluctuation spectrum #or
of all the fields are of course present and we will show that L L (1) :
—co. This initial condition implies that théi;” mode is

quantum fluctuations of the axion field can seed density per-,
turbations and CMB anisotropies in the post-big bang era. Té\bsent and
this goal we have to study the axion evolution equation and 1 1-35
the spectrum of axions _produced during the pre—b!g pang lﬂk(ﬂ):(—n)llef)(kﬂ), p=s—y="r,
phase due to their coupling to the background gravitational 2 1-¢6
field and the dilaton.

Varying the action2.3) with respect to the field in the for p<—7,. (2.16
string frame yields the equation of motion

y(y—1)

1_T z,bk=0, (213

Here — n,— 7, is the transition time scale between the pre-
VM(ed’V”“a)=O. (2.11 big bang phase and the standard radiation dominated era.
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After the singularity, during the standard radiation andBy matching the two solution€.16) and (2.22 at the tran-
matter dominated eras, the dilaton is frozens const, and  sition time »; we obtain, forlkn,|<1 and 7> 7> 7,
the pump field is proportional to the standard scale factor, o1
ap>a. The scale factora, and its second derivativé, are (5) . K<k
given by Friedman’s equations. For a critical universe, whiche, (k)= +c(k) with ({le(k)[?y=1 \ki ' b
we consider throughout our calculations and which is cer- 0, k>k
tainly a good approximation until redshifts<5, we have ' ’

(2.23
a 4nG 3 +2a2A -
2~ 3 @ (p—3p) 3 (2.17  so that
. k)
a2 8wG a’A =isi k(79— for n<n<me,. (2.2
;Z 3 a2p+T_ (218) llfk \/E n( (77 771)) N1 1< Neq ( 4)

Here k;=1/7, represents the maximal amplified frequency
of the pre-big bang phase. As already discussed in the intro-

o L ... duction we suppose that modes with frequencies much lower
the radiation energy densityr, is the matter energy density, thank, are unaffected by the unknown details of the transi-

andp the pressure of the radiation fluid. At early times, Whent_ion from the pre- to the post-big bang phase.

lﬁt:inneg“g'ble’ these equations have a simple analytical so The energy-density distribution of the produced axions is

Energy conservation for radiatiain) and matter(m) yields
prx1/a* and pc1/ad, with p=p,+p, andp=p,/3; p, is

then
azaeq(ﬂ/er%(ﬂ/v*)z), dp,(k) 1 /k\4 o2 ky 4 3-2u o1
dlogk ~ #2\a) {deP=\Z) g =k

3 >1/2: Neq
2(vV2—1)

=129, (2,19 (2.25

The axion spectral inder,, is related to the power which
where 7, is the transition time between the radiation and thecharacterizes the evolution of the external dimensions by
matter dominated erg,(7eq =pm(7eqd = Ped2- The mass

term during the post-big bang becomes n =4—2M=3+27:2(i§
v 1-6

= 47Gpeq

: (2.26

a, a 1

a—A= 3 o 1.2 (2.20  which follows from Eq.(2.16. In order not to over-produce
A 2 tam infrared axions we have to requige<3/2, orn, =1, which

. L . . implies 6=—1/3. As already pointed out in Ref22], the

Wh(_anA is nonvanishing, the 50'““0’.‘ for the effec;twg po‘tjimiting value u=3/2 corresponds precisely to a Harrison—

tential can be foun_d numerically but since the contribution o zel'dovich spectrum of CMB anisotropies on large scale. In

a small cosmological constant to the scale factor become@,rms of the evolution of the scale factor, this corresponds to

important only_ at late time, the SOIUt'OnS@'la. are almost an isotropic expansion and contraction, respectively, of the
unaffected; this has been checked by numerical tests. In th@(ternal and internal dimensions

radiation dominated eray<7qq, the mass term can be ap-

proximated bya,/ay=1/(2%, 7). 1
We now study the axion evolution in the post-big bang ax p*(~ n) (2.27)
era. Let us write the term in parentheses on the left-hand side
of the axion equation of motion, EQ2.13, as Notice that only for a 10-dimensional spacetime, symmetri-
5 (a/a) 72 127, + 112) cal expansion and contraction corresponds to a flat axion
(kz— i =k2( 127 =k2< R L spectrum which induces a Harrison—Zel'dovich spectrum of
a X X CMB fluctuations[23,27.
(2.21 Nevertheless, as will be discussed in Sec. IV, at very large

scales and very earlynegative times, we will need a
slightly blue axion spectrum to fit CMB data. This requires a
somewhat larger value af, i.e., a slower expansion of the
“external dimensions and, correspondingly, a somewhat faster
contraction of internal dimensions at early time. This blue
spectrum cannot be maintained up to the string scale because
the fixed normalization at the string scale tgf
=[(ky/a;)/Mpjaned®~0.01—-10 % would lead to much too
1 small amplitudes at the COBE scale.
()= —=[c,(K)e *7+c_(k)ek]. (2.22 Let us therefore investigate what happens if the universe
Vk expands with some expansion law describedshyat early

In order to study the solution of EqR.13 we have to study
the ratio of the dimensionless mass teraig) 7> andx? to

be compared with unity. As long as we are well in the radia
tion dominated erap<<7, , the dimensionless mass term is
small and particle creation induced by the pump field is neg
ligible at early times. Equatiori2.13 then is a harmonic
equation solved by free plane waves,
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FIG. 1. Evolution of the axion spectral index during the pre-big
bang. The valug, is the string coupling constant given by the

10
string scale divided by the Planck scatp=(k;/a;)/Mpjanck (SEE n/neq
Sec. V.

FIG. 2. The dimensionless effective masggd) »? (thick line)
and two modes that enter the horizon before and after equality. The
mode that enters the horizon before equalitfk=10kq,7), is
unaffected by the pump field and begins to oscillate without being
amplified. The mode that enters the horizon after equaltfk
=0.1k¢q, 1), is amplified and begins to oscillate later.

times, n<7n,<— 7, and then switches to an expansion law
given by 6. after 5, . Sufficiently short wavelength modes
which are inside the horizon during the entire epogh
<7y, Which satisfy|ks,|>1, are not influenced by this
change in the expansion law. The teém/a, is indeed sub-

dominant in the equation of motion faf, during this epoch ; - ;
. - 2 . term and there is no more particle creation. Therefore modes
and hence the Bogoliubov coefficigo(k)|” of Eq. (2.23 is which enter the horizon before equalityy, =1, are not

not influenced by the transition; we just obtain the result L . e )
(2.23 with w=yu, . amplified any further in the post-big bang phase. The spec

The situation is different if a mode exits the horizon be_trum of axion perturbations for these r_nodes remains ungf-
fore Then the “incoming” solution y(7< 7,)= fected. How_e_ver, the low frequency tail of the spectru_m is
To~ 2y ) 9 7= "o further modified as soon as we enter the matter dominated
(=n) 7", (kn) differs from the vacuum solution and g5 \yhere the dimensionless mass term becomes of order
matching it to the general “outgoing” solutionj(»>17,)  unity. The modes which enter the horizon after equality,
=by(—7)"H) (kn) +by(— 1) H{Z) (k7), yieldsb,~b;  kz, =<1, are amplified. This amplification of low frequency
=((w )T (12))|knyl2|#+~#~. Correspondingly, the co- Modes has important consequences on the angular spectrum

where the expansion law changes at a well defined tipe ~ The behavior of the dimensionless mass tefiiaj 7*

cients in the post-big bang radiation dsee Fig. L after equality have been plotted in Fig. 2. As one can see,
only modes entering the horizon after equality are amplified.
, K\ 1720 (Klky) 2R+~ 24— for k<Kk,, Deep in the matter erg> 7, the dimensionless mass term
(le(k)] )2(k—l> 1 for k=k,. is constant and Eq2.13 becomes
(2.28 )
y 2 —
We do not want to specify the event which may have it | k= ;2) =0. (2.29

triggered such a transition from, (k<kp)=4—-2u_ =1

+¢& to n,(k>kp)=1, but there are certainly different possi-

bilities. For example, it is interesting to note that isotropic

expansion and contractiorax1/b, in a 26-dimensional

space time give$_=1/5, orn,=1.33, which corresponds ) L

to £=1/3, just about the “tilt" needed to fit the observed  ¥x(7)= 7" AHG}(kn)+BHg3(kn)] for 7> neq,

CMB anisotropies(see Sec. I)l. Therefore, if we start out

the pre-big bang phase with a 26-dimensional bosonic string (2.30

vacuum(which we know to be unstable due to the presence

of tachyon$ which then “decays” to a supersymmetric and whereA andB are constants to be determined by matching

10-dimensional string vacuum at some timg, which cor-  conditions(see Ref[23]). The post-big bang solutiorf.24)

responds to a comoving energy scilg this could induce and(2.30 are only correct far from matter-radiation equality

the required tilt. 7eq @nd in order to compute CMB anisotropies we require
We now study the modification in the axion spectrumbetter precision for these solutions also fgr- 7., We

during the post-big bang era, wheag=a. As we have seen therefore solve the axion equation of motion E2.13 nu-

above, during the radiation erg<#, , the dimensionless merically, from the early radiation era through the radiation-

mass term is small. Furthermore, once a mode enters thmatter transition.

horizon,k > 1, thek? term always dominates over the mass  The axion field is then given by

This equation can again be solved in terms of Hankel func-
tions,
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1 c(k) string scalek;, which breaks scale invariance. The axion
ok,n)=——=th(n)= ——=o(k,7), (2.31))  spectrum on large scales is therefore not determined by di-
a(7) avk mensional arguments since there are dimensionless factors of

the form (k/k,)® which may alter the spectrulviThe signifi-
cance of these points will become clearer later in the paper.

A As in Ref.[25], we first consider a critical univergeotal
k2— —)¢=0 (2.32 density parametefl=1) consisting of cold dark matter,

a baryons, photons, and three types of massless neutrino, with

L . : i _ or without a cosmological constant. We choose the baryonic
){/i\gt: llzrg“?zl gz)rjdmon [obtained from the pre-big bang solu density parametef),=0.05 and the value of the Hubble
o parameteiH ,=10th km s *Mpc ™! with h=0.65.
ok, p)=sinky), n<n,. (2.33 The linear perturbation equations for this universe in Fou-

rier space are of the form

where the variable is the solution of equation

o+

We have solved Eq(2.32 numerically in this work using
the effective potential2.20. The prefactoc(k) is a stochas- DX=S, (2.36
tic Gaussian field with power spectrum
whereX is a long vector containing all the fluid perturbation
(Je(k)[?)=(k/ky)">, (2.349  variables which depends on the wave numkemnd confor-
. . ) ) . mal time », S is a source vector which consists of certain
wheren,, is again the primordial spectral ind&®.26, our  compinations of the seed energy momentum tensorZil
free parameter which depends on the higher-dimensiong| jinear ordinary differential operator. More details on the

pre-big bang phase. linear system of differential equatiofi®.36 can be found in
Ref. [32] and references therein.
C. Axion quantum fluctuations as seeds For a given initial condition, this equation can in general

We are now ready to consider the axion field as a sourcB€ Solved by means of a Green'’s functidity, 7'), in the
of the linear cosmological perturbation equations. As in preform
vious works[22—25 we suppose that the contribution of the
axions to the cosmic fluid can be neglected and that they _|™
interact with it only gravitationally. They then play the role X(ks0)= ning(k,'r]o,ﬂ)s(k,ﬂ)dﬂ. 2.30
of seeds which, by their gravitational field, induce fluctua-
tions in the cosmic fluid21]. The back-reaction of the met- Wwe want to determine power spectra or, more generally, qua-
ric perturbations on the evolution of seeds is second ordegratic expectation values of the form
and can be neglected in first order perturbation theory. The

evolution of axions can be computed by using the solutions (Xi(K, 70)X; (K, 770)*), (2.38
of the axion field equation in the unperturbed background
geometry, Eq(2.13. which, according to Eq(2.37), are given by

The axion fieldo is a Gaussian stochastic variable. Its
contribution to the perturbation equations is given in terms of

7
its energy-momentum tensor, <Xi(k,770)xj(k,770)*>:J i

70 "
Git(70, 1) Gim(m0,7")
Min Y Min

(o) — _1 2
T/.LV (9#0'(7,)0' 2 g,uv((gao-) ' (235) X<S|(77)S;1(7],)>d77d7], (239)

which is quadratic ino and therefore not Gaussian. More- o

over, although the axion field evolves according to a lineafSums over double indices are understpod.

equation, it will enter into the perturbation equations through We therefore have to compute the unequal time correla-
T{7) which evolves nonlinearly. tors (Si(7) (7)), of the seed energy-momentum tensor.
The perturbations in the dark matter and radiation compoJNis problem can, in general, be solved by an eigenvector
nents are set to zero in the initial conditions and are subséxPansion metho@32,33, as it will be done in Sec. IlIB.
quently induced by the gravitational field of the axion, HOWever, if the source evolution is linear, the problem be-
Hence, axion seed perturbations belong to the class diomes especially simple. In this “coherent” case, we have
isocurvature perturbations. However, they differ from topo-

logical defects by being “acausal,” i.e., they have nonvan- Si(m)=Fi(7,7i0)Si(7in), (2.40
ishing correlations on super-Hubble scales, since they are

due to field excitations induced during an inflationary era.

As we have seen above, the axion power spectrum obeysiactually the radiation-matter transition scabg, represents a

a simple power law with cutoff and is in general not analytic scale which is also present in models with topological defects, but
atk=0. Furthermore, axion perturbations do not, in generaldeep in the radiation or matter era this scale has no significance,

display the scaling behavior expected from topological dewhereas as we shall see the above factors multiply the entire power
fects. In the pre-big bang we have an additional scale, thepectrum of fluctuations.
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with a deterministic transfer functioRj; . In this situation D. Axion seeds—Scalar component
we can, by a simple change of variables, diagonalize

" SO : ) _ the we first consider the scalar contribution given by the four
Hermitian, positive initial equal time correlation matrix,

variablesf, of Eq. (2.44). Only two of these functions are

_ N independent, the other two are related by energy and mo-
(Si(2in) Sml 2in)) = N1 Gimn - mentum conservation. We shall use two linear combinations
Inserting this in Eq(2.39 yields of the three scalar seed functiofis, f,, andf .:
f(k,p)=a%p =T (k,7), (2.44)
, 70 p 00
X)X} (n'))= gil(ﬁoaﬁ)Fi|(77177in)\/)\_|d77)
Min .
ikITY (k, )
o , (k)= — 3 (2.45
X Gim(70,7")Fim k
Min
’ ’ * 3 (o) iLj 1 2 klg(o)
X7, pi) Nmdn' | Sim. (24D falk, )= 5a| ~Ti (K, Kk + 2k MT (K, m) |
We therefore obtain exactly the same result as the one ob- (2.49
tained by replacing the stochastic variabley the determin- ) . )
istic source terns®? given by In the presence of seeds and in the linear perturbation
! approximation, the scalar component of the total geometric
S]{detv(n)si(det)(n): Fii (7, 7n) Fit (7, min) perturbations determined by th_e Bardeen potenttand &
can be separated into a part induced by the se&dsand
=exp(i ;) V(IS (M P)(Si(m)]%), g, given by
(2.42 )
k2<bs=4wG[fp+3(a/a)fU)], b A+V=-87Gf,,
where g;; is a, in principle unknown, phase which has to be
determined case by case. Clea#ly=0. When the stochastic (2.47)

variableS is real(as in our caseexp(#;)==1. This linear . . . .

or coherent approximation will be fully used in this paper. and a part induced by the pert_urbanons O.f the cosmic fluid,

We shall test its validity in Sec. Il B. V¥, and® . The total geometric perturbations are given by
It is useful to split the energy-momentum tensor of theth® SUMS,

axion seed$2.35) into a scalar, vector, and tensor part since

the perturbations generated by each of these components V=¥ A+V,, P=0+0,. (2.48

evolves independently. Because of statistical isotropy these

three modes are uncorrelated. This also corresponds to a dehe Bardeen potentials are gauge invariant and fully de-

composition of the source teri into a scalar, vector, and scribe scalar perturbations of the Friedmann geoméary

tensor contributionsS®, S, andSM. A suitable param-  details look in Refs[34,35).

etrization of the decomposition of the Fourier components of ~ Scalar perturbations are seededdyand¥. These are

Tﬁfy) is [21] the standard independent variables to use as scalar sources in
the perturbation equations. In order to simplify somewhat the

Too =f i
00— Tps computation, we us@®g andf . as our scalar seed degrees of
freedom and the scalar source vector becomes
Tio = —ikf, +v;, (2.43

) Sk, ) =[Pk, 7),47Gf (K, 7)]. (2.49

k 1
TI(JU)Z 5ijfp_ ( klkj_ _5” ) f,n.+ —(Wlk]+WJk|)+ ’Tij ’
3 2 The energy-momentum tensor of the axion is given by Eq.
(2.35, which leads to the following expressions for the seed

wheref,, f,, f,, andf are random function dt; w andv functions in terms of the axion field:

are transverse vectons; k=v-k=0, andr;; is a symmetric,
traceless, transverse tensdrs 7;; k! = 0. The variablesf(.),
(v,w), and (r;;) represent the sjcalar vector, and tensor de- f (k,7) 1J' d°p [o(p, 7)o ([k—pl, 7)

e i ' ' =5 | 5—3lo(p,n)o(|K—p|,
grees of freedom oT (), respectively. They are the source =5 | a2t P Pl
of the perturbation equations.

The goal of the next three subsections is to express the
correlators of the source componets), SV, andS(M in .
terms of these variables. These expressions, inserted in the]c (K ):_if dp k- (K—p)or(p, m) o[k —pl. 7)
perturbation equatiori2.36, then allow us to compute the ol k) (2m)3 Plotp.m)e Pl7),
CMB anisotropy and dark matter power spectra numerically. (2.5

—p-(k—=p)a(p,p)o(lk—p|,7)], (2.50
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3 dp
fa(k,m)=— Wf W[(k'm[k'(k—p)]

1
— 3K (k=p)|a(p,mo([k=pl,7).
(2.52
The first two seed functiond,, and f,, together with Eq.
(2.47), yield &g,
47G d®p
ok, =7 2n7|2 U(p ma([k—pl,7)
5p-(k=p)a(p,n)o(lk—pl,7)
ak-(k—p)
=35 —z—op.ma(lk=pl.7)|.

PHYSICAL REVIEW D63 063501

Note thatF4(k, ,7) andF,xk,#n,n) are positive by defi-
nition and, since the functiong. are real,Fi;j(k,7,7")

Fii(k,»",7). In order to compute these functions we make
use of Egs(2.52 and(2.53 and we exploit the stochastic
average conditions of the Gaussian variablesand o
(Wick's theorem. We first introduce three real auxiliary
variables¥;, 3,, andX 3, which depend on the power spec-
trum of the axion field{|c(k)|?), and on the solutiorp of
the evolution equation, Ed2.32),

(o(k, ok, 7"))=(2m)5(k—k")X1(k,7,7'),

(a(k,ma(k',n"))=(2m)36(k—k")Z5(k,7,7'),

(o(k,ma(k',n"))=(2m)°8(k—K")Z5(k,7,7"),

(a(k,mo(k',n"))=(2m)36(k—k')Z5(k, 7", 7).
The variables,; are given by

(le(k)]?)

(2.59

(2.53 El(k,n,ﬂ')=Wso(k,n)@(k,ﬂ'), (2.59
The only information about the source random variables (e(k)[?) .
which we really need are the unequal time correlators be- 2,(k,7,7')= m[@(k,n)—'ﬂ( n)e(K,7)]
tween the Fourier components of the independent variables man
&, andf .. These correlators can be written in terms of four X[ o(k, 7" ) —H( 7" ) o(k, 7] (2.56

real[since the correlator&o(k, 7)™ (k', ")) are rea) sca-

lar source correlation functions;,;, Fos, Fi, and Fyq,

which completely characterize the scalar component of the 23(k,7,7')= WW

source,
(Ds(k,m@Z (K" 7"))= (k=K )F1i(k,7,7"),

4mG(Dy(k, (K, 7)) =8(k—K")F1Ak,7,7'),

n'))=8(k—=Kk")Fau(k,7,9'),

(47TG)2<f77(k!77)fjr(k,177,)>: 5(k_k,)|:22(k177177,)'

47G(f (K, 7) D (K,

(4mG)? [ d%p
Fi(k,7,n")= 7;4 f(

+35(p, 7", m)23(lk—pl, 7", 7)]-3

+H(np' )
(p-k—p*)(k*=p-k)
k2

H
+9 M[(k k—p)Za(p, 7,7')

+3

XEs(Ik—pI,n,ﬂ’)]],

. 9(47mG)?
Fouk,m,n')= JK8

(27)

5 ){ 3P, 77" ) 2o(lk—pl 7 m") —

k-(k —IO)

X[H(p)Z3(p, 7", M21(lk=pl, 7, 7")+H(n")Z3(p, 7, 7" )2

dp 1,
f 3 (k-p)(k~(k—p))—§k p-(k—p)

2
(o) 1) —H(n)]e(k,7"),

(2.57

whereH=a/a. Notice that> (7, ) and2,(7», ) are posi-
tive by definition.

Inserting these results in EqR.52 and(2.53), and mak-
ing use of Wick’s theorem for the “random variable(k),
we can work out a somewhat lengthy but straightforward
expression for the scalar source functiokg;, Fo,, Fio,
andF,,, in terms of the variable¥, 2,, andX;:

p-(k—p)[Es(p.n,n')Es(lk—pl.n,n’)

[H(m)Z2(p, 7,7 )23(lk=p|,7,7")

1
2(pu7]'77,)23(|k_p|a7]'-7])]+ E(p'(k_p))zzl(pv’”!nl)21(|k_p|v7]l77,)

1([k=pl, 7", 7)]

l(|k_p|v77177’)+(k(k_p))(kp)ES(pvnrin)

2
2l(p177177’)21(|k_p|=77177,)1
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3(47G)? [ d®p 1,
FlZ(kl77177,):_ 2k6 f(zW)S (kp)(k(k_p))_gk p(k_p)

X 23(p17],17])23(|k_p|!77,!n)_p'(k_p)zl(p!n!77,)21(|k_p|177!7],)
k(k_p) ’ ’
_6H(7])T23(p177 777)21(|k_p|!77177 ) )

F21(k1777 77’):F12(kv77’:77)-

The scalar source correlators of the perturbation equatiofihe vector source correlators of the perturbation equation
(2.36 can be written as a two by two positive and Hermitian (2.36) then are
matrix,
, , (k& (k7)) =PG(k,n, 7). (264
9 SrrL Fukinn') Fuk 77"
(SF(k, ) S* (k,n'))= , - .
Fak,m,n")  Foik,7,m") F. Axion seeds—Tensor component

(2.58 The tensor contribution to the perturbation equations is
seeded by the tensor seed functief)s Eq. (2.43,
E. Axion seeds—Vector component
_— . . . —(pXph_1 kny (o)
The vector contribution to the perturbation equations is 7ij(K, ) =(P{P] =3 Py P Ty (k, ). (2.69

seeded by the vector seed functians Eq. (2.44), This leads to an expression for the tensor seed function in

vi(K,7)= P%ng’)(k, 7, (2.59 terms of the axion field,
i ; d3p N
xhkergepfilnlesc;hbey projector operator onto the space orthogonal 7 (K, 7)=— f (ZT)g[p‘L P — (1/2)(8;— kik;)

P =58, —kikj, K=k k. (2.60 X(p*)?lo(p, ) a(k—p,7), (2.66

which can be used to compute the unequal time correlators.
heThese correlators can be written in terms of a tensor source
correlation functionH, which completely characterizes the
Jensor component of the sourgg?],

Again, the second vector seed function,is given byv via
momentum conservations. Defining the projection of t
vector p onto the space orthogonal to by pt=Pp, we
obtain an expression for the vector seed functions in terms

the axion field, (47G) ¥ 7i;(K, 7) Tim(K, "))

d3 _ _ S, -2 k.
Uj(kﬂ?):if%pfﬂp,ﬂ)a(k—p,ﬂ)- (2.61) =[6i1 Ojm+ Simj1 — 6ij Sim+ K™ (i} KiKm+ Simkik;
= 81 Kjkm— SimkiK; = ) Kikm = 9jmk ki)

We again need the unequal time correlators between the Fou- _ ,
g q + kKK k] H (K, 7, 7)

rier components of the vector seed functiens These cor-

relators can be written in terms of a vector source correlation =(PiiPjm* PjiPin—PijPimH(k,7,7").  (2.67)
function G, which completely characterize the vector com-
ponent of the sourcg32], Using Eq.(2.66) and Eq.(2.54) this function takes the form
. 2 3
(47G)*(vi(k, Mvj(k,7'))= (8 —kik)G(K, 7, 7"). . (47G) f d°p 2.2
Using Eq.(2.61) and Eq.(2.54 this function takes the form —(k-p)? 2% 1(p, 79" )2 ([k—pl, 7. 7").

Gk, n,n')= k2p?— (k-p)?
(k') =52 (277)3( pe=(kep)’) The tensor source correlators of the perturbation equation,

X[22(p, 77" ) Za(|k=pl,7.7") Eq. (2.36), hence are
+33(p, 7,7 )Za(lk—pl, 7", )] (S (kST (k, 7))

(2.63 =(PiiPjm* PjiPim—PijPim)H(k, 7,7").  (2.69
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Ill. CMB ANISOTROPIES INDUCED BY AXION SEEDS 10" . .
In this section we present the CMB power spectrum ob- 107 k=0.001k .,
tained in our scenario. We first describe the CMB angular .
power spectrum obtained in the coherent approximation and e 0T
in Sec. lIB we then show in detail that the coherent ap- = 10
proximation is very good for axionic seeds, leading to errors :: -
of 5% or less. x 10
LL: 10°
A. CMB power spectrum—coherent approximation -
A source is called coheref86,37 if the unequal time
correlation functions can be factorized or replaced by the 107" 107 10T i i i e
product of deterministic sources, as in £g.42), Tl/neq
(S{(MSi(n"))==S;(DI*)IS(n)]?). (3.1 FIG. 3. Time evolution of the source functidfy;(k, 7, 7)k®,

with tilt n,=1.1, for different modesk=0.00Kk.q, k=0.0XKcq,
As pointed out in Sec. II C, this approximation is exact onlyk=0.1keq, k=keq, andk=10k.,. For super-horizon modes, the
if the source evolution is linear. Then the differdntnodes  correlatorF; decays likes~2"/k*. As soon as a mode enters the
do not mix and the value of the source term at a fiket a  horizon the corresponding correlator decays faster due to the oscil-
later time is given by its value at initial time multiplied by lating behavior of the axion field. Before crossing the horizon, the
some transfer function, as in E@.40. In this situation Eq. other scalar equal time correlators show the same power law behav-
(3.1) becomes an equality and the model is perfectly coherior while the vector correlatd(k, 7, 7)o 7' ~2"/k? and the tensor
ent. This is not the case for our model since we know thatcorrelatorH (k, , ) '~ 2" (independent ok).
although the axion field evolves according to a linear equa- _ ]
tion, its energy-momentum tensor, which enters into the perthe time behavior of one of the equal time correlators. On
turbation equations as source, does not; it is quadratic in th@Uper-horizon scales,<1, they all display the same typi-

. . . o H - 1-2 H
field o. Thus, nonlinearity leads to mixing of scales and to¢al behavior,ok™ "=, which depends on the spectral
deviation from a Gaussian distribution. indexn, and onk, a positive power determined by dimen-

Nevertheless our situation is very similar to the latge Sional arguments. On subhorizon scales the correlators decay

limit of g|oba| O(N) models in which the on|y nonlinearities fast due to incoherent oscillations of the convolved axion

also are the quadratic expressions of the energy-momentufi¢!d-

tensor. In this case the effects of decoherence are very small We have solved E¢2.36 for the scalar, vector, and ten--

and one finds that the full incoherent result is not very dif-SOr components. The CMB anisotropy power spectrum is

ferent from the perfectly coherent approximati@2]. given by the_sum of the three contributions and depends on
This result motivated us to compute the CMB anisotropythe spectral index,,,

in the perfectly coherent approximation. Here we repeat and

expand on results already presented in IR&%] while in the

next section we justify them by discussing the full incoherent . .
Justity y 9 In Fig. 4 we show the scalar, vector, and tensor contribu-

case. i to th Iting CMB anisotropies f i
In order to compute the CMB anisotropy power spectrum lons o the resulting anisotropies for an axion spec-

in the coherent approximation, we replace the unequal tim&um with t'lf[ ng=1.1. Th_e hump” atl~60 in the scalar
correlation functions in Eq2.39 by the products component is due to the isocurvature nature of the perturba-

tions. This is also one of the reasons why the acoustic peaks

c\"=c;>v + V1T, (3.3

<‘S‘i(s)(k,77)8}8)(k,77’)) are very low, the other being that the vectand tensor
component is of the same order of magnitude as the scalar
:Fi<]_”a>(k,,7,,7') one. This enhances, in seed models, the CMB spectrum at
large scales thereby lowering the acoustic peaks at small
= t[Fi(j”")(k,n, r;)Fi(j”")(k,n’,n’)]l’z, scales. The result obtained is remarkably similar to the large
N case studied in Ref32]. The main difference here is that,
(SVK, SV(Kk,7")) like for usual inflationary models, we dispose of a spectral
index which is basically free. By choosing slightly bluer
=G (k,7,7") spectra, we can enhance the power on smaller scales.

In Fig. 5 we show the sum of the scalar, vector, and tensor
contributions comparing the results from different tilts with
T T '\ L1 , and without a cosmological constant. The CMB power spec-
(ST &k 7)) =H" (k. 7, 7") tra obtained can have %onsiderable acoustic pegks aﬁop
=[H"(k, 7, ))H"(k, 5", 5" )] to 300, which can be raised further by adding a nonvanishing
cosmological constant. Increasing thertilt raises the acous-
where we have indicated the dependence of the correlatotg& peaks and moves them to slightly smaller scales. As
on the spectral inder,, by a superscript. In Fig. 3 we show found in Ref.[23], the power spectrum of the scalar compo-

=[G"(k,7,mG"(k, 7', 7n")]"% (3.2
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FIG. 4. The CMB anisotropy power spectrum for fluctuations induced by axion seeds. We show the sum of the scalar, vector, and
induced by axion seeds with a tii;,=1.1 andA =0. This result is  tensor contributions for five different tilts, with , =0 (solid) and
computed within the coherent approximation. We show the scalaf?s =0.7 (long dashel The tilt is raising from bottom to tom,,
(dotted—dashed vector (dashey, and tensoxdotted contributions  =1.1,1.2,1.3,1.4,1.5.
separately as well as their susolid).

from | =2 to|=1500, one often makes use of scaling prop-
nent is a|Way5 blue. The tensor and vector component Courﬁrties. We call seeds scaling if their correlation function,
terbalance the increase of the tilt, maintaining a nearly scaleéS(k, 7)S(k, 7)), is scale free, i.e., the only dimensional
invariant spectrum on large scales. The models can be cleararameters irF;; , G, andH are the variables;, 7', andk
discriminated from the common inflationary spectra by theirthemselves. As we have already mentioned, axion seeds are
isocurvature hump and by the position of the first peak. Anot scaling since the correlation function contains factors of
discussion on the comparison of these results with recerihe form (/k;)“. But such a simple prefactor can be written
CMB data will be given in Sec. IV. as

We have also computed the CMB polarization for our N N N
model. The result for two different spectral indices is shown (klky)®= (k) (ky77)
in Fig. 6 where we compare it with the polarization from
usual inflationary models. It is interesting to note that our
models show a characteristic “polarization hump” which is
significantly smaller in inflationary models. The polarization
“hump” is completely suppressed for topological defects Nl [T
due tc? causalitigs] ar?ld regfesents a very ghar%cteristic sig- Fij (k7 7) =1 ko) €3 (yr),
nature of “acausal seed models” like the one under consid-
eration.

and does not enter the costly numerical integration. Numeri-
cal calculations are reduced greatly if one can write the cor-
relation function in the form

G(k, 7,7 )=9(Nnn" k)W(y,r), (3.4

H(kyﬂ!n,):h( Vnn’!kl)T(y!r)y
B. Decoherence
In order to estimate the accuracy of the results found iwherey=kyn7" andr=1/5'/, andf, g, andh are given
the preceding subsection, we discuss here the decoherenceeyplicitly. The matrixC;; and the functionsV and T are
the axion seeds showing that the difference between the célimensionless by construction. In the following we shall call
herent approximation and the full incoherent calculation isthis behavior “modified scaling.”
very small. The decoherence is tested only for the scalar But even after this extraction of the explicit breaking of

component of the spectrum, where it may lead to “smearingcaling, our source does not exactly obey “modified scal-
out” of the acoustic oscillations. Its effects on vector anding” due to the radiation-matter transition. As one can see

tensor perturbations are expected to be small. immediately from the evolution equation of the axions in the

We first introduce the property of “scaling” for the axion Post-big bang phase, Eq.32, the extra dimensional pa-
seeds. When working with seeds, to solve the problem of theameter implicitly contained in the unequal time correlators
enormous dynamical ranfjeeeded to compute th€’s IS 1, which comes from the expression for the scale faator

Eq. (2.19. The radiation-matter transition introduces the
new scalen, and thereby spoils the modified scaling behav-

5 ior of the axion seed$However, deep in the radiation or
To compute the CMB and dark matter power spectra, we need to

know the seed functions over a dynamical rangekg@f,/Knin

~30000 and this for all timeg;,< 7, ' <5y with kzn;,<1. This

gives finally more than 1000 functions of two variables which have °This breaking of scale invariance is also found in models with
to be known accurately over a long time interval. topological defects.
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FIG. 6. The CMB polarization

power spectrum in linear scale
(left) and log scaldright) for fluc-
tuations induced by axion seeds
and shown for two different tilts,
with Q,=0.7, n,=1.3 (lower
solid ling), and n,=1.5 (upper
solid line), are compared with the
standard inflation resulfdashed
line) for the same cosmological
parameters. Polarization clearly
distinguishes between inflation
= and axion seeds, especially via the
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matter erap<n, or > n, , respectively, the reduced cor- CMB anisotropy power spectrum: using the radiation ap-
relation functions do obey scaling. In order to avoid thisproximation somewhat enhances the Sachs—Wolfe plateau
problem and to simplify the numerical calculations, weand the first peak.
therefore compute the axion field according to the equation We now compute the CMB anisotropies in the full deco-
for the pure radiation era, i.e., settia§z) = . We call this  herent case for the radiation approximation, making use of
the radiation approximation. This approximation affects themodified scaling. We restrict our attention to the scalar com-
correlators and the CMB anisotropy power spectrum, espeponent, where decoherence can be important.
cially at large angular scales, but is expected not to differ As explained in Eq(3.4) we write the scalar correlation
significantly from the correct results on the scales of thematrix Fj; (for n,=1) as
acoustic peaks, and it allows us to obtain sources which obey
modified scaling.

In the coherent case, where we just need the equal time Fij(k,7,7")=(nn")¥Cij(y.1), (3.5
correlators, the numerical requirements have not been very
involved and we have not been pushed to the radiation ap-
proximation. But, as we shall see, the fully decoherent calwhereC;; is only function ofy andr and hence dimension-
culation will not change the results considerably and thereless. The matrixC;; is clearly symmetric under— 1/ as
fore an enormous numerical effort, which would be needed
to compute the unequal time correlators without any use of
scaling behavior, is not justified for this simple test. ™

In the matter dominated era, axion seeds are amplified by
guantum particle creation while in the radiation approxima-
tion they do not experience this amplification. Nevertheless, -
axions are massless particles and they behave like a perfect e
radiation fluid. Thus, their energy density decreases a¥§ 1/ L 10°
faster than the cosmic fluid in a matter dominated universe,
whereax 72 andpoa2, than in a radiation dominated uni- 10
verse, wher@x » andp>=a~*. This leads one to some over-
estimation of the sources gt> », in the radiation approxi- -
mation. I ~

In Fig. 7 we compare the time behavior of one of the k=10K ~.
equal time correlators taking into account the radiation mat- 107° 07 1 5 1‘0
ter transition(dashed with those obtained in the radiation 0 0 0
approximation (solid line) for two different values ofk.
Modes that enter the horizon before matter-radiation equal- FIG. 7. Time behavior ofF y(k, 7, 7)k?, with spectral index

ity, k>.keq' c.io not feel quantum particle creation; theref_or_e,n =1.1, for a mode which enters the horizon before matter-
there is no difference between the full result and the radlatlorpgdiation equality, o(k=10k.q,7), and after, o(k=0.1.q,7)
. ’ eq: ’ ’ . eq: .

approximation on super-horizon scales. Inside the horizon, iRjig |ines show the modes in the radiation approximation, dashed
the matter era the mode decays faster than in the radiatiomes without approximation. Fok>keq there is no difference on
approximation. Modes which enter the horizon after equality super-horizon scales, while fér<k, the additional amplification
k<keq, get first amplified by particle creation, an effect experienced in the matter dominated phase is lost in the radiation
which is missed in the radiation approximation, but then de-approximation. On subhorizon scales, the radiation approximation
cay faster than in the radiation approximation. As can bealecays slower than the correct result. A similar behavior is found
seen in Fig. 8, the slower decay has consequences on tfa the other correlators.

rad. approx
—-—-- no approx |
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——-—- matter | <xi<k,no>xj<k,no>>=§ NUXI (K, 70) XM (K, 70),
radiation i~ 3.7)

whereX("(7,) is the solution of Eq(2.36 with determin-
istic source termy{",

1(1+1)C”

XMk, o) = | “dnaik oMk 38
i ( !770) ﬂg( !7]0177)J|U| ( 1X)- ( )

Min

For the scalar CMB anisotropy spectrum this gives

N

10 100 1000
/ c,<3>:n21 AScfs; 3.9

FIG. 8. Scalar contribution to the CMB angular power Spectrum,~(s) i< the scalar component of the CMB anisotropy induced
computed in the pure radiation approximatigolid line) and with- bl the det inisti dNis th b fei
out approximation(dashed ling with an axion spectral inder,, y the de grmlnls IC Sourae, an_ IS the num_ er ot eigen-
—1.1 andA =0 values which have to be considered to achieve good accu-
racy.

o ) In our model we actually find it easier to diagonalize the
can be seen in Fig. 9. Fgr<1 the sources decay likeYl/  5trix

and after horizon crossing they begin to decay faster due to
oscillations. . - _ Eij(XaX’):Cij(X1X,)‘/XX,a
The source correlation matri;; can now be considered
as kernel of a positive Hermitian operator in the variablesvhose diagonal is flat fox<<0.01, exactly as in the largs-
x=kzn=y/r andx’'=kzn’'=yr, which can be diagonalized and texture models studied in Rg82]. In this case we have
[32],
Din(X) Tjn(X")

N
Cij(x,x )—En) An RN (3.10
Cij 6X) =2 Min(X)vja(X'), (3.6 B
n wherev j, and\,, are the eigenvectors and the eigenvalues of
the matrixC;; .
where {v;,} is an orthonormal series of eigenvectqms- We diagonalize the matri>(~3ij using the logarithmic

dered according to the amplitude of the corresponding eigerweight functionw = 1/x which allows us to sample the range
valueg of the operatorC;; for a given weight functiorw. of scales of interest more evenly. In Fig. 10 we show the
The eigenvectors and the eigenvalues depend on the weigbigenvectors decomposition of one of the scalar correlators.
function w which can be chosen to optimize the speed ofNote that a rather high number of eigenvectors and eigenval-
convergence of the sun{8.6). ues is required to reach a good accuracy in the approxima-
Inserting Eq.(3.6) in Eq. (2.39 leads to tion of the diagonal of the correlation function. Summing up

. 107" e

107 10

10 107" 10° 10’ 10

FIG. 9. The correlatorCqy(y,r) is shown. In the left panel the solid, dashed, and dotted lines, respectively, repséht
X1077,r), C1(1x10 4r), and C;4(0.03r). In the right panel the solid, dashed, and dotted lines, respectively, rep@sgmtl),
C14(y,0.3), andC,,(y,0.1). The other scalar correlatd@s, and C,, behave similarly.

063501-13



F. VERNIZZI, A. MELCHIORRI, AND R. DURRER PHYSICAL REVIEW D63 063501

10 - - - - the oscillations around the first peak leaving however the
r— secondary peaks and their positions almost unaffected. Al-
g [N TN T TN K ] though axion perturbations are in principle incoherent, it is
\ difficult to observe this from the CMB power spectrum. The
8L . effects of decoherence are indeed very weak and the spec-
trum obtained in the perfect coherent approximation repro-
Y o duces the decoherent result within less than 5%. We hence
4 ',"' are confident to obtain a sufficient accuracy in the perfectly
Ve coherent approximation which we shall apply for the rest of
2t 7 this paper.
7
0 S IV. COMPARISON WITH CMB ANISOTROPY DATA AND
10 10 MATTER PERTURBATIONS

In this section we compare the results found in the pre-

FIG. 10. The sum of the first few eigenfunctions®f,(x,x’) is ~ ceding section with data discussing in particular the conse-
shown for a weight functiow= 1/x. The first(dotted—dashedfirst ~ quences of the normalization of CMB anisotropies to COBE
and secondshort dasheyl first 10 (long dashe] and 50(solid) and presenting the cosmological parameters favored by our
eigenfunctions are summed up. The open circles represent the futhodel. In Sec. IVD we finally compute the dark matter
correlation function. Here we only show the equal time diagonal ofpower spectrum and we compare it with data.
the correlation matrix but the same convergence behavior is found
in the C, power spectrum which is sensitive to the full correlation A. Normalization and the kink

matrix. Comparing our numerical result with the CMB data we

normalize our curve to the fluctuation amplitude observed by

N=50 eigenvectors the convergence is guaranteed; theOBE. This provides a relation between the string scale and
summed up correlation function reproduces the original tahe scale of the break,. Since we ignore constant factors of
better than 1%. order unity in the overall amplitude in our calculation, the
This is different from the largé& model, where about 20 result for the amplitude is not very precise, but certainly

eigenvectors suffice for the same accuracy. We assume thggrrect within a factor of about 2. For the best fit value of the
this difference is due to the slower decay of the source funcijlt, n —1=¢~0.33, our numerical result on the COBE

tions. As can be seen from Fig. 10, the source function igcale(at | ~10) is|(l +1)C,=0.397(7, ky) “%°. Hereg, is
decaying from its original value to about 1% over the inter-ine  dimensionless string coupling constant given by
val 0.1<kn<10, while in the largeN model this decay is @1/ Mpjanck Where wy =k, /a;=H(7,) is the inverse string

achieved in the interval 0Skp<4. scale. Comparing this with the COBE normalizatidil
We now compute the scalar contribution to the CMB+1)C|T§:5225MK2 yields

anisotropies using Ed3.9). The result is shown in Fig. 11.
We note that decoherence slightly reduces the amplitude of 7, kp=(2.1X 1039@1/8_ 4.1

For example, if the string scale is eV, so thatg;

0
12 ~0.1, we getk,~h?/(2 kpc), where we have insertegl,
a ~20h%2Mpc. An interesting constraint comes from the fact
that the break in the spectrum should be on a scale which is
o= / smaller than the scale represented by the first acoustic peak
Sy in order not to reduce the latter. Singg corresponds to the
= horizon scale at equality, this requireg k,=1 or w4(a;)
X =H;=0.02mp;ne  Together with H{<0.1mpjgnee  this
~ brackets the string scale just in the range where it is expected
for very different theoretical reasons.
The length-scale/energy-scale corresponding to the break
107" . . k, at the timex,, during the pre-big bang phase, when the
10 ; 100 1000 expansion law is supposed to change, is given by
FIG. 11. The scalar contribution to t@&> power spectrum is [tol ~ [ 7p]a(7p)/0
shown for a primordial spectral index,=1.1. From bottom to top, a( np)
the solid lines show the contributions of the sum of the first ten, first ~ | 77b| a(7y) 32
twenty, first thirty and first fortyC{S"’s. The thick solid line rep- n
resents the full eigenvectors summatiop to N=50) to be com- b —1/4 3 -
pared to the perfect coherent approximation, shown by the dashed ~| 7ol | — 107%~6x10 “cm~3 GeV 1,
line. The decoherence does not significantly wash out the acoustic n
peak and the oscillations. (4.2
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FIG. 12. The influence of the break position on the CMB power
spectrum. The top solid line is the spectrum without break. The 0-61 4' — '1|5' — 11|6I — '117' ——
dashed lines from top to bottom represent a spectrum with break at ’ ’ . ’
k,=3/7, , 2/n,, and 1k, , respectively.

FIG. 13. Confidence level68%, 95%, and 99%for the res-
caling factorR and the amplitude in COBE unigs from the recent

where we hav ~n,~20M ndn,;~0.1cm. Th
ere we have usegl,~ 7, —20 Mpc andy, 0.1 ¢ € ]BOOMERanG and MAXIMA-1 observations.

energy scale obtained in this way is uncertain with a factor o

about 10. i
In Fig. 12 we show the dependence of the CMB anisot- sinhy  (open
ropy spectrum on the position of the break. Typically, the F(y)= y (flat) (4.9

break lowers the second and subsequent acoustic peaks while

it does not substantially affect the first peak. siny  (closed

depends on the geometry of the universe. The varighte

. the following integral:
B. Cosmological parameters

In the last two years, a peak in the CMB power spectrum _ \/mfzdec dz
at1~200 as been detected by several different experiments, 7 Ko [Qm(1+2)3+Qy(1+2)%+ Q1Y
most notably TOCO98[1], B97 [2], B98 [3], and (4.5
MAXIMA-1 [4]. Among them, the BOOMERanG-98 power
spectrum[3] reported the best and at the same time most As pointed out in Ref[39], the conditionR= constant
conservative detection, although coming from only 5% ofidentifies curves in th€),,—Q, plane, with nearly degener-
their overall data set. The position, amplitude and shape afite C, spectra, providing that the baryon density parameter
the peak can be fitted by the power spectra expected in th@p,yoniS kept constant.
simplest inflationary scenario based on adiabatic perturba- In Fig. 13 we plot likelihood contours, obtained as fol-
tions in a spatially flat universgbs,8]. Therefore, this peak lows: we rescale the string cosmology power spectra plotted
represents the biggest challenge for the model presented Fig. 5, both in amplitudé (in COBE units and position
here. R. We compare the resulting spectra with the BOOMERanG

We want to investigate whether a suitable choice of cosand MAXIMA-1 data in the region up t6<400 by a simple
mological parameters can bring our model in agreement with,? fit. We find that the 68% confidence limit f& margin-
the above mentioned data. This question is also very imporalized overA is 1.50<R=<1.63 withR=1.57 as best fisee
tant in view of the usual “determination of the cosmological Fig. 13).
parameters” from CMB anisotropies, in the sense that it In Fig. 14 the confidence levels dR are translated to
shows how the results can change when assuming a differenbnfidence levels in th@ , — Q,, plane which are then com-
model of structure formation. In other words the so-calledbined with the current SN1a resu[#0]. It is clear from this
“measurements” of cosmological parameters from CMB figure that the model can be brought in reasonable agreement

anisotropies are strongly model dependent. with observations only if the universe is closed. The devia-
The peak position is determined mainly by the angulartion from flatness becomes less and less important towards
diameter distance parameter Q,—0, where all theR=const lines converge &b, =1.
While the region with(},,>1 can be safely excluded from
R 1 [ Qm F(y) 43 different cosmological observations, a moderately closed
Qx| 2 ' universe withQ,~0.85 andQ,,~0.4 is compatible with

supernova type ldSNIa) results and also with estimates
for Q,, from cluster abundance and x-ray ddtee, e.g.,
HereQyx=1-Q,—Q, is the curvature parameter and Ref.[41]).
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] FIG. 16. The CMB polarization spectrum of our modsblid
FIG. 14. The 68%, 95%, and 99% confidence levels for thejing) for the best fit parameters is compared with the inflationary
cosmological paramete3, and(},, from the peak position de- cMB polarization spectrum in a critical universe wifh,=0.7.

tected by BOOMERanG and MAXIMA-1 for the model presented The fact that in our model the universe is closed is visible in the
in this paper(dashed The solid contours are obtained including the gmaller distances between successive peaks.
supernovae data.

peak distance is therefore a better estimator of the validity of

As we have seen, the position of the first acoustic peals model. Clearly more and better data around the isocurva-
can be adjusted by choosifi), and(), so that the resulting ture hump region, i.el~100, are needed to decide definitely
universe is marginally closed. Nonetheless, the width of thevhether the model is ruled out. This will most probably be

peak, compressed by the increaseRofis still not in very  achieved with the microwave anisotropy praidéAP) satel-
good agreement with the data, as well as the isocurvaturge [42] planned for launch in 2001.

hump. The resulting normalizegf is about~1.8 for the best
fit, which “excludes” the model at 70% confidence. One has
however to keep in mind that the,’s are not Gaussian and
therefore the probability for our model to lead to the mea- The polarization spectrum distinguishes easily between
sured CMB anisotropies is even somewhat higher than 30%adiabatic inflation and the axion seed modste Fig. 16
In Fig. 15 two theoretical CMB spectra normalized to the The preferred closed universe for axion seeds translates into
COBE data are shown together with the MAXIMA-1 and a smaller distance between polarization peaks. As the physi-
BOOMERanG98 data. We did not optimize on the axioncal distance between peaks depends only on the sound speed,
spectrum, or the baryon density parameter, but we chosehich is only slightly dependent ombaryomz, a quantity
n,=1.33,Q,=0.4, andQ e~ 0.05. which is already tightly constrained by nucleosynthesis, the
Playing with the break-scalg, we can in principle lower Al on which this distance projects is mainly determined by
the second peak leaving the first one almost unchanged. Nesgpatial curvature{)y [it depends also somewhat &b, as
ertheless, the position of the second peak is different frontan be seen from E@4.5)], and is independent on the model
the one indicated by inflationary models and the data. Interfor the initial fluctuations.

C. Polarization

FIG. 15. Two theoretical CMB
anisotropy spectra normalized to
the COBE data, with(),=0.4
and axionic spectral index,
=1.33, are compared with the
MAXIMA-1 and BOOMER-
anG98 data. From left to right, our
model has a break &t,=3/7,
andkp,=1/7, , respectively. Low-
ering k, we subtract power on
small scale and we can lower the
second peak leaving the first one

ol v ) ol v ) almost unchanged.
200 400 600 200 400 600

80 80

20 20
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FIG. 17. The linear dark matter power spectra for fluctuations induced by axion seeds with spectral ivde®3 and a break in the
spectrum ata) k,=3/7, and(b) k,=1/%, , for a flat universe witH},,=0.4 (dotted, Q,,= 0.3 (dotted—dashedand ) ,,=0.25 (dashed
are compared with data. We assume an IRAS galaxies bih&oﬂ,},oa.

D. The dark matter power spectrum =1/n, , andQ,=0.4 arecg=0.85 andog=0.74, respec-

The computation of the dark matter power spectrum hadively. Analysis of the abundance of galaxy clusters suggests
already been performed in Rdf25] where a considerable UBNO-5QE10'5 [44].
deviation from the data was found. In this work we repeat
this computation taking into account the preferred values of E. Conclusions
the axion spectral index and of the matter energy density
found from CMB data, and we introduce the break in the
axion spectrum discussed above. With this additional input iP . L
is possible to establish reasonable agreement between t éth the present CMB anisotropy mggsurgment;, which is
data and the dark matter power spectr(see Fig. 17, owever I.ess favorable than thg gtnkmg f|t. of simple flat

Since the computation of the theoretical matter powe@diabatic inflationary models. This is our main result.
spectrum for a closed universe is relatively involved and EVen if our model will tun out to disagree with better
since, for the purpose of comparing the theoretical spectruﬁ#ata’ we believe that we learn the important lesson that cos-
with observations, we are interested in scales much belowpological parameters obtained from CMB anisotropies are
the curvature scale, we have computed it for a flat universestrongly model dependent, a point which is swept under the
with matter and a cosmological constant, assuming that thearpet by the vast majority of the circulating “parameter-
contribution from curvature is negligible on the scales undefitting” literature. We believe that it is very important in the
consideration. Indeed, what really plays a role for the mattefuture to concentrate on model independent quantities, like
power spectrum is the matter contef¥,,, which fixes the interpeak distances, to determine cosmological parameters.
time of equality between matter and radiation, determines
when structures can start growing, and fixes the position of V. GRAVITATIONAL WAVES
the bend in the power spectrum.

In Fig. 17 we present the theoretical dark matter power Gravitational waves represent one of the most powerful
spectra together with the data as compiled by Peacock arf@ols to investigate the early history of the universe. They
Dodds[43]. Depending on the scale of the break in the axiondecouple at a temperature comparable to the string scale
spectrum\,= 1/, our model can be compatible with data which makes them an important window for cosmological
for different values of(},, in the range 0.2 ,,<0.4. The phenomena related to the string theory domain. In this sec-
role of the break is the following: ik, is small we subtract tion we show that axions can contribute substantially to the
power only from small scales and we are able to reproduce production of the gravitational wave background in the pre-
power spectrum in good agreement with data eve@ jfis  big bang model, acting as a source in the tensor perturbation
relatively high. However, if we do not introduce any break in equation. This leads to a spectrum which is different from
the axion spectrum we find too much power on small scaleshe standard gravitational wave background of string cosmol-
and our theoretical dark matter power spectrum is incompategy based on the “direct mechanism” of graviton produc-
ible with data(compare our present result with those foundtion by amplification of quantum vacuum fluctuation. This

We have shown that it is possible to choose cosmological

in Ref. [25]). new “indirect mechanism” leads to a flat spectrum and can
The root mean square mass fluctuation within a ball ofeasily be distinguished from the direct one. Indeed, as
radius &~ *Mpc for the model withn,=1.33, k,=3/7, , we shall see, the axion induced gravity wave background

and Q,=0.25 and for the model withn,=1.33, k, = dominates the “direct background” at small frequencies and
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represents an important observational constraint for strinfundamentally different. While the direct production of

cosmology. gravitons takes place during the pre-big bang phase and is
due to the amplification of vacuum fluctuations, the indirect
A. Direct production—Amplification of vacuum fluctuations production is sourced by the axions during the post-big bang

I ___era.
So far, amplification of quantum vacuum fluctuations ~ rne reation, propagation, and damping of gravitational
B?S/deuct:)t?sr? (;ng;%ﬁ;%n‘j ;{Ic:VgSrlndCL:I?iilg Tﬁgh;';'sbr?g fg;ntg\?/aves in a Friedman background are described by the tensor
phase[45—47]. During the dilaton era, before the big bang, perturbation equatiotsee, e.g., Ret.50)),
when the scale factor evolves according to E29), the . a.
Fourier modes of metric tensor perturbations satisfy an evo- hi; +25hij —Ah;j=167Ga’T;;, (5.9
lution equation similar to Eq2.13), namely,

. where tensor perturbations in the metric are parametrized by
K2— ?) YT =0, (5.1 the traceless, divergence-free, symmetric tensor figld
T

,=0,,+a%(ph,,, h“=0=V,h", 5.
wherear=ae™ #?is the pump field of gravity waves an,&j'(r =G (70 a a 59
is the canonical variable for tensor modes of the metric. Fowhich is a gauge invariant variable. As before a dot denotes
the isotropic case discussed in this work, one find that the derivative with respect to conformal time. Equatiér)
«| 7|¥? independently on the evolution and number of di-is @ wave equation with source terrj .
mensions during the pre-big bang phase. After proper nor- The tensor fieldh; is usually decomposed into two polar-
malization to the incoming vacuum, this yields the solution ization states as

T
e+

== VHP (ky), 7<—71. (5.2) hij(x, ) =h*(x,n)e; ) +h* (X, n) e (X), (5.6

— 1 _ Al 1 :
After the big bang, in the radiation dominated erp, Wheree; =e'e/—efe’ and e =elef+efe] are the polariza-
> 7,, the solutions of Eq(5.1) are simple plane waves. tion tensor fields ande(,e?,€’) is a local orthonormal basis
From the matching conditions between these two regimedthe wave is propagating in the direction.
applying the same procedure as discussed in Sec. 11 B for the The energy density of gravitational waves is given by the

axion field, one obtains the following spectrum of gravita- 00 component of the energy momentum tensor of the wave.
tional waves, This can be defined as a space-average over several oscilla-

tions,
4 3
wq w w
Q ~—( ) ~g§(—

g 2 2 -
HoMpianck| @1 w1

3
Q,, (5.3 ~(hyhy  (h%)+(h%)
Po=167Ga?~  16nGa’

(5.7)

which is a tilted spectrumyw®, normalized tog? at the

string scale. One actually supposes that, at a string epocWe decomposé, andh.. in Fourier modes,

7s<— 71, the dilaton-vacuum regime behavior of Eg.9) a3k
breaks down and the universe undergoes a de Sitter expan- hx(Xﬂ?):f 5 s€%*h (k,7), A=X,+; (5.9
sion with linearly growing dilaton, which lasts until the be- (2)

ginning of the radiation dominated erg . This phase leads hqrefore

to a nearly flat gravitational wave spectrum at very small

scales. The normalization of the spectrum to the string cou- ) d’k .

pling g; can then be performed at a lower frequeney, hx(X,ﬂ)ZJ' 2m)? e'**hy (k, 7). (5.9
<w,, leading to a somewhat higher density of directly pro-

duced gravitons than the one discussed here. This is veryhe spatial average then becomes

important in order to make the direct background observable

and still compatible with nucleosynthesiSee Ref[48] and L, d®k  d3k’ e (kK o
references therein for more detail& more detailed discus- (h)= f 2m32 2m)3° (ha(k,mhy (K", 7)),
sion on the important signatures and observational conse- (5.10
guences of this direct production of gravitational waves can

be found in Ref[49] and references therein. and we can use the stochastic average condition

(hy(K)hy (k")) =(2m)38%(k— k") 8,/ | hy (K)|2,

B. Indirect production—Axion source
(5.11

Let us discuss now the production of a stochastic gravita-
tional wave background generated by the presence of axiowhich yields, under the hypothesis of statistical isotropy,
seeds. This indirect background will be superimposed to the
direct one discussed above and will dominate the total spec- _ 1 J' dk k2|, (k, 7)|2 (5.12
trum at large scales. These two production mechanisms are Pq (7a)’16mwG ML '
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We now compute the spectrulm, (k, z)|? in the coherent A(k)=f(k)c,(1), B(k)=f(k)cy(1), (5.20
approximation. For this we introduce the deterministic
source functiolI(k,7) defined by which yields, forx>1, h, ~kh,~f(k)/ 7, and thus
hy(k, 7)|2= ——k 3. 5.2
[for the functionH, see Eq(2.68]. The polarization tensors k)l 7 29

satisfy € e),=25)" and we can hence rewrite E¢5.4) in

momentum space as Using Eq.(5.12 we hence find

49} f dk dpyg 493

h +2éh +k?h, =87Ga?ll (5.14 P —~22| 5~ Of = (5.22
AT EG T A ' ' 9 mGay®) k dlogk wGa’»n?’

The factor 1/2 comes from the fact thék sources both which corresponds to a flat spectrum of gravitational waves.
modesX and + of h;; and, assuming again statistical iso-  On the other hand, at early time the radiation energy den-
tropy, each mode is sourced with the same strength. Sincsity, p.,, dominates the Friedman equation which becomes
we want to compute a gravitational wave spectrum we only

consider modes which enter the horizon in the radiation a2 8nG

dominated erakz, >1 anda/a=1/7, the other modes be- 2 praz_ (5.23

ing uninterestingtoo large wavelengjhfor possible obser-

vations. Therefore we also consider modes far from COBL—‘With 2/a~
scale,k>k,, and we can comfortably assume a flat axion
spectral indexn,=1. We then write Eq(5.14) as

1/m we can write the gravitational wave back-
ground spectrum produced by the axion field as

< i Pg
v Eh;+hx= f(k)/\x, x=<1 (active sourch Qg=p—Qy~109‘1197- (5.24
X 0, x=1 (dead source Y
(5.19
. L C. Observational consequences
where the conformal time derivative has been replaced by ) ) .
the derivative with respect ta=kz. In this equation we In the preceding subsection we derived the spectrum of

power law behavior outside the horizon which is of the formthat it is flat on scales much smaller than the COBE scale
and normalized such as to lead to the correct amplitude of

8wGa’ll(k,x)=x"Y%?f(k), f(k)=8mwg?k 3 fluctuations in the CMB anisotropies.

(5.16 Its normalization depends on the fundamental ratio be-
tween the string and Planck mass which is usually taken to

and can be considered negligible inside the horizon wherge of the order ofj;~0.1+0.01[53]. The energy density of
the correlators decay quickly. induced gravity waves is proportional to the fourth power of
The homogeneous solutions to this equation are thg, like the CMB anisotropy spectrum. Since the COBE nor-

spherical Bessel functions of index zejg(x) andyo(x). In malization also depends du [see Eq(4.1)], which plays no
the regime,x<1, the solutions can be found with the role for the gravity wave spectrum on the scales considered

Wronskian method, which yields here,g, alone is still allowed to vary in the range cited above
_ even though Eq(4.1) provides a precise constraint for a
hy(k,x) =f(K)[c1(X)jo(X) +C2(X)Yo(X)], X<1, combination ofg, andk,. Using the previous values fay,

(517 e find a flat spectrum of gravity waves wilﬂn299~4
X (10°8+10"%), a range which, most probably, will be
reached by the third generation interferometgss]. This
1 1 renders the indirect gravity wave background an important
C1(X)= f dx x"2cosx, Cy(x)= f dx x2sinx, observable of string cosmology. Note also that in the case of
0 0 its detection it would provide a direct measurement of the
(5.18 string scale.

At present the most relevant observational bound for a
gravity wave background comes from pulsars. In particular,
the timing of the millisecond binary pulsar implies a limit on
hy (k,x)=A(K)jo(x) +B(K)ye(x), x=1. (5.19  any stochastic gravity wave backgroundh?()g (atf=4.4

X 10 9Hz) <1x10 8 (at 95% c.l) [54], which transforms

where

while in the second regime=1, they are a linear combina-
tion of the homogeneous solutions,

By matching Eqgs(5.17) and(5.19 atx=1 we find in our case into a limit ory;=0.07 in this model.
The direct gravitational wave background has a blue spec-
hy(k,7)=f(k)[c1(1)jo(kn)+Ca(1)yo(kn)], trum and therefore dominates the indirect background on
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10° . . . structure and CMB anisotropies in the universe provided that
there is a break in the primordial axion power spectrum
which from slightly blue on very large scales turns to a flat
o spectrum on scales smaller than the brdakk,. Such a
LIGO-1 break appears if the expansion law undergoes a transition
® msec pulsar Lo u during the pre-big bang phase. For the scenario to agree with
observations the break must occurgi~ —0.37, , which
corresponds to an energy scale of the order of several GeV.
LISA / The axion seed model leads to isocurvature fluctuations
10 | F } with important contributions from vector@bout 50% and
/ tensors(about 15% on large scales. The first acoustic peak
/ in the CMB anisotropy power spectrum is aroure300 for
107 L - . _,2’ . a flat model,Q=Q,+Q,=1. To reproduce observations
10 10 10 10 the universe has to be closed with paramet@rg;-0.85 and
f[Hz] Q,,~0.4. This parameter choice is also in agreement with
supernovae and cluster data. Even though our model leads to
a largery? when fit to the CMB data it cannot be excluded
line) has been normalized to string mass at a frequency,of by the:, presently available data. However, the “isocurvature
—500Hz. This frequency corresponds to the timg,= hump atl~4_0 and the_reductlon not (_)nly of the se_cond but
—1/(2mf.a(ny)) for the transition between the dilaton-dominated /SO Of the third acoustic peaks are signatures which clearly
regime and the de Sitter phase in the pre-big bangsma above  distinguish the model from standard inflationary scenarios.
The solid line represents the sum of the direct and indirect producEurthermore the CMB polarization spectrum  significantly
tion of gravitational wave background. The analysis has been limdiffers from the inflationary resuilt.
ited to frequencied>f,,, wheref, denotes the frequency corre- ~ We have also studied gravitational waves which are gen-
sponding to the scale of the break. erated during the post-big bang phase by the tensor type
anisotropic stresses in the energy-momentum tensor of the

small scales, as shown in Fig. 1&he crossover frequency axion field. We found that they lead to a flat observable
w. between the two regimes is determined dpy and the background of gravity waves which can give stringent con-

-10
Gy ug?)'—m
= 7

FIG. 18. The gravitational wave spectrum in pre-big bang mode
for a value ofg,;=0.03. The directly produced backgrou¢dhshed

normalization frequency, discussed above, straints on the model if detected by the planned LIGO-III
and LISA observatories.
we=9"%w;. (5.25 As the model studied is very predictive let us finally men-

tion that its failure to reproduce observational data, which is

This crossover may actually, depending on the unknowrinted by present CMB anisotropy measurements and might
value ws, fall into the range of frequencies at which inter- be reinforced by future more accurate data, does not by itself
ferometers will be operating. rule out string cosmology. An additional important hypoth-

Finally, we would like to point out that, like the CMB esis of the model is that nongravitational interactions of the
anisotropies of this model, the indirect gravity wave back-axion field with the dark matter may be neglected and the
ground considered here is not Gaussian, which can lead ®@xion plays the role of a “seed.” If this hypothesis is re-
interesting observational consequences. laxed, the axions may interact with radiation and dark matter
and even lead to a standard adiabatic fluctuation spectrum.
This idea deserves further study, but most probably the non-
Gaussian character of the perturbations also survives in such

We have investigated the consequences of axion seedsScenario.
which naturally occur in the context of string cosmology. We
found that these seeds may induce the observed large scale

VI. CONCLUSIONS
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